Abstract:
Provided is a sensor device capable of removing the influence of each offset voltage of a sensor element, a differential amplifier, and an amplifier of the sensor device, to thereby detect a physical quantity with high precision and respond to high-speed operation. The sensor device includes: a switch circuit connected to a first terminal pair and a second terminal pair of the sensor element, for controlling switching of the terminal pairs and outputting signal voltages; a differential amplifier including a first input terminal and a second input terminal connected to a first output terminal and a second output terminal of the switch circuit, respectively, for outputting a result obtained by amplifying a difference of the signal voltages; an amplifier including at least two differential input pairs, one of which inputs the differential signal output from the differential amplifier, and at least one of which inputs a reference signal corresponding to a physical quantity to be detected; and a detection voltage setting circuit for outputting the reference signal to the amplifier. Switching of the switch circuit provides a first detection state and a second detection state, and detection is performed in one first detection state and one second detection state.
Abstract:
Provided is a sensor device capable of removing the influence of each offset voltage of a sensor element, a differential amplifier, and an amplifier of the sensor device, to thereby detect a physical quantity with high precision. The sensor device includes: a switch circuit, which is connected to a first terminal pair and a second terminal pair of the sensor element, for controlling switching of the terminal pairs and outputting detection voltages; a differential amplifier, which includes a first input terminal and a second input terminal connected to a first output terminal and a second output terminal of the switch circuit, respectively, for outputting a result obtained by amplifying a difference of the detection voltages; an amplifier including at least two differential input pairs, one of which inputs the differential signal output from the differential amplifier, and at least one of which inputs a reference signal corresponding to a physical quantity to be detected; and a detection voltage setting circuit for outputting the reference signal to the amplifier.
Abstract:
To provide a small-area photoelectric conversion device without impairing a resolution switching function, signals for controlling output order control switches provided so as to correspond to photoelectric conversion elements are selected by an output order control circuit and a shift register. In this manner, the number of flip-flops forming a shift register is reduced.
Abstract:
Provided is a magnetic sensor device capable of performing signal processing at high speed with high accuracy. The magnetic sensor device includes: a plurality of Hall elements; a plurality of differential amplifiers to which the plurality of Hall elements are connected, respectively; a detection voltage setting circuit for outputting a reference voltage; and a comparator including: a plurality of differential input pairs connected to the plurality of differential amplifiers, respectively; and a differential input pair connected to the detection voltage setting circuit.
Abstract:
Provided is a magnetic sensor device capable of performing signal processing at high speed with high accuracy. The magnetic sensor device includes: a plurality of Hall elements; a plurality of differential amplifiers to which the plurality of Hall elements are connected, respectively; a detection voltage setting circuit for outputting a reference voltage; and a comparator including: a plurality of differential input pairs connected to the plurality of differential amplifiers, respectively; and a differential input pair connected to the detection voltage setting circuit.
Abstract:
An output driver circuit provides an overcurrent protection function by a simple circuit configuration. The output driver circuit has a constant-current circuit, a constant-current mirror MOS transistor, and a selector circuit. The constant-current mirror MOS transistor and the output MOS transistor constitute a current mirror circuit. The gate of the output MOS transistor is controlled by a voltage based on a constant current generated by the constant-current mirror MOS transistor, thereby limiting the current flowing between the source and the drain of the output MOS transistor.
Abstract:
To provide a magnetic sensor circuit that outputs a desired detection pulse while preventing an erroneous detection/erroneous release pulse output when a fluctuation in a power supply voltage occurs within an operating power supply voltage range. A magnetic sensor circuit is configured to include a detection circuit that detects a fluctuation in a power supply voltage or an internal power supply voltage and so as not to latch a determination output of a comparator by a latch circuit that, on the basis of a power supply fluctuation detection signal output from the detection circuit, holds the logic of a control clock signal output from an oscillation circuit for a prescribed period of time and determines the output logic of an output terminal.
Abstract:
Provided is a magnetic sensor device, which is configured to connect each terminal of a Hall element to another end of a variable resistor having one end connected to GND by switching of four switches. Thus, a detection voltage level for a magnetic field intensity can be arbitrarily set with a small-scale circuit. The detection voltage level is determined only by the resistance ratio, and hence the influence of fluctuations in power supply voltage and manufacturing fluctuations can be suppressed. This configuration can simplify signal processing and achieve higher-speed signal processing.