Abstract:
To provide a semiconductor device that is capable of displaying data even when a radio signal is not supplied. The semiconductor device includes an antenna, a battery, a sensor, a nonvolatile memory, a first circuit, and a second circuit. Power supplied from the antenna is converted into first power via the first circuit. The battery stores the first power and supplies second power. The sensor performs sensing with the second power. The nonvolatile memory stores analog data acquired by the sensor. The second power is used to store the analog data. The second circuit converts the analog data into digital data with the use of the first power. The nonvolatile memory preferably includes an oxide semiconductor transistor.
Abstract:
A small semiconductor device suitable for high-speed operation is provided. The semiconductor device includes a first circuit, a global bit line pair for writing, a global bit line pair for reading, and a local bit line pair. The first circuit includes second to fifth circuits. The second to fifth circuits are electrically connected to each other by the local bit line pair. The second circuit functions as a read/write selection switch. The third circuit functions as a working memory that stores 1-bit complementary data temporarily. The fourth circuit has a function of precharging the local bit line pair. The fifth circuit includes n (n is an integer of 2 or more) sixth circuits. The sixth circuits each have a function of retaining 1-bit complementary data written from the third circuit.
Abstract:
The storage circuit includes first and second logic circuits, first and second transistors whose channel formation regions include an oxide semiconductor, and a capacitor. The first and second transistors are connected to each other in series, and the capacitor is connected to a connection node of the first and second transistors. The first transistor functions as a switch that controls connection between an output terminal of the first logic circuit and the capacitor. The second transistor functions as a switch that controls connection between the capacitor and an input terminal of the second logic circuit. Clock signals whose phases are inverted from each other are input to gates of the first and second transistors. Since the storage circuit has a small number of transistors and a small number of transistors controlled by the clock signals, the storage circuit is a low-power circuit.
Abstract:
A logic circuit that can retain a state even without power supply is provided. The logic circuit includes a first circuit, a pair of retention circuits, and a second circuit. The pair of retention circuits includes two switches electrically connected to each other in series and a capacitor electrically connected to a connection portion of the two switches. Each of the two switches is formed using an oxide semiconductor transistor. The first circuit has a function of generating complementary data from a piece of input data. The pair of retention circuits retains the complementary data. The second circuit has a function of amplifying the complementary data retained in the pair of retention circuits.