摘要:
An ion generator of an ion implanter, the ion generator includes: an arc chamber provided with a slit for ion extraction and forming an equipotential surface with a first voltage; a filament installed inside of the arc chamber, heated to a predetermined temperature and generating electrons; magnetic field devices provided outside of the arc chamber and supplied with a current from a current source and generating a magnetic field in the arc chamber; a gas discharge device injecting a predetermined gas into the arc chamber; and an electrode positioned opposite to the slit and supplied with a second voltage having a high voltage than the first voltage from a voltage source and generating a magnetic field in the arc chamber.
摘要:
An ion generator of an ion implanter, the ion generator includes: an arc chamber provided with a slit for ion extraction and forming an equipotential surface with a first voltage; a filament installed inside of the arc chamber, heated to a predetermined temperature and generating electrons; magnetic field devices provided outside of the arc chamber and supplied with a current from a current source and generating a magnetic field in the arc chamber; a gas discharge device injecting a predetermined gas into the arc chamber; and an electrode positioned opposite to the slit and supplied with a second voltage having a high voltage than the first voltage from a voltage source and generating a magnetic field in the arc chamber.
摘要:
A spin field effect transistor may include at least one gate electrode, a channel layer, a first stack and a second stack separate from each other on a substrate, wherein the channel layer is formed of a half metal. The half metal may be at least one material selected from the group consisting of chrome oxide (CrO2), magnetite (Fe3O4), a double perovskite structure material, a Heusler alloy, NiMnSb, La(1-x)AxMnO3 (A=Ca, Ba, Sr, x˜0.3), and GaN doped with Cu, and the double perovskite structure material is expressed as a chemical composition of A2BB′O6, and a material corresponding to A is Ca, Sr, or Ba, a material corresponding to B is a 3d orbital transition metal, and a material corresponding to B′ is a 4d orbital transition metal. The 3d orbital transition metal may be Fe or Co, and the 4d orbital transition metal is Mo or Re.