Abstract:
A drain plug comprising of a plurality of polarity magnets arranged in an alternating fashion. The plurality of polarity magnets are arranged in line with the drain plug. A magnet cover envelops the plurality of polarity magnets for easy cleaning. The unique alternating arrangements of the plurality of polarity magnets help increase the magnetic gradient for stronger attraction forces for metal wear particles. The use of a plurality of polarity magnets also increase the surface area where the metal particles can be held.
Abstract:
A magnetic torque sensing device having a disk-shaped member with a magnetoelastically active region. The magnetoelastically active region has oppositely polarized magnetically conditioned regions with initial directions of magnetization that are perpendicular to the sensitive directions of magnetic field sensor pairs placed proximate to the magnetically active region. Magnetic field sensors are specially positioned in relation to the disk-shaped member to accurately measure torque while providing improved RSU performance and reducing the detrimental effects of compassing.
Abstract:
Provided are a high density semiconductor memory device capable of precisely reading data by suppressing the occurrence of a leakage current due to the high-integration of the semiconductor memory device, and a method for manufacturing the semiconductor memory device. The high density semiconductor memory device includes: source and drain electrodes disposed over a substrate, and forming a Schottky junction with a channel region; and a floating gate disposed over the substrate of the channel region, and configured with a plurality of nanodots. The nanodots may be formed of a silicon compound or any material that can be charged.
Abstract:
The present invention involves a method and apparatus for canceling the effects of magnetic field noise in a torque sensor by placing three sets of magnetic field sensors around a shaft, the first set of field sensors being placed in the central region of the shaft and the second and third sets of field sensors being placed on the right side and left side of the field sensors placed at the central region, respectively. A torque-induced magnetic field is not cancelled with this arrangement of field sensors but a magnetic near field from a near field source is cancelled.
Abstract:
A method for fabricating a semiconductor device includes forming a gate insulation layer over a substrate, forming a conductive compound containing layer over the gate insulation layer, etching the conductive compound containing layer and the gate insulation layer to form a gate structure, forming a metal layer over the resultant structure obtained after the etching, and letting the metal layer to react with silicon from the substrate to form source and drain regions comprising a metal silicide layer over the substrate exposed on both sides of the gate structure, wherein the conductive compound containing layer does not react with the metal layer.
Abstract:
In a process for manufacturing a hyperfine semiconductor device, an apparatus for manufacturing a semiconductor device such as a schottky barrier MOSFET and a method for manufacturing the semiconductor device using the same are provided. Two chambers are connected with each other. A cleaning process, a metal layer forming process, and subsequent processes can be performed in situ by using the two chambers, thereby the attachment of the unnecessary impurities and the formation of the oxide can be prevented and the optimization of the process can be accomplished.
Abstract:
An speed sensor for a rotating shaft includes a plurality of magnetic portions on the shaft that output a magnetic field from each of the magnetic portions, wherein the magnetic portions are integrally formed in the shaft by magnetically polarizing the shaft material itself. At least one magnetic field sensor is positioned proximate to the shaft for detecting the magnetic field from each of the magnetic portions and for outputting a signal corresponding to the angular speed of the shaft as the shaft rotates. The signal is useful for calculating the angular speed of the shaft, and the calculated angular speed value is useful for things like adjusting the angular speed of the shaft, monitoring the performance of the system in which the shaft is used, and for other purposes.
Abstract:
An apparatus for receiving a heterogeneous material includes: a main body coupled and fixed to a main body hole part of the container; a receiving part providing a storage space within the main body; and a foldable part that has a lower portion that is connected to an upper portion of the receiving part, wherein the foldable part has an upper portion that is connected to an upper portion of an opening part and a lower portion of the main body hole part, wherein the foldable part includes a foldable connection part which is disposed on an upper portion of the storage space such that downward displacement of the foldable connection part breaks a receiving part sealing part for sealing a lower end of the receiving part to allow the content within the storage space of the receiving part to drop into the container.
Abstract:
In a position sensor, two field sensors are placed along a line parallel to the movement to be detected. Two magnets are placed at an angle to each other to generate a magnetic field such that their position is a linear or approximately linear function of the difference between the outputs of the sensors.