摘要:
A semiconductor device including: a first silicon level including a first single crystal silicon layer and a plurality of first transistors; a first metal layer disposed over the first silicon level; a second metal layer disposed over the first metal layer; a third metal layer disposed over the second metal layer; a second level including a plurality of second transistors, the second level disposed over the third metal layer; a fourth metal layer disposed over the second level; a fifth metal layer disposed over the fourth metal layer, where the fourth metal layer is aligned to the first metal layer with a less than 40 nm alignment error; a via disposed through the second level, where each of the second transistors includes a metal gate, where a typical thickness of the second metal layer is greater than a typical thickness of the third metal layer by at least 50%.
摘要:
A semiconductor device includes: a semiconductor substrate; a semiconductor layer on the semiconductor substrate; a source electrode and a drain electrode spaced apart from each other on the semiconductor layer; a gate electrode on the semiconductor layer between the source electrode and the drain electrode; and an insulating film covering the semiconductor layer, the source electrode, the drain electrode and the gate electrode, the gate electrode has an eaves structure including a lower electrode joined to the semiconductor layer and an upper electrode provided on the lower electrode and wider than the lower electrode, a principal ingredient of the insulating film is an oxide film where atomic layers are alternately arrayed for each monolayer, and a film thickness of the insulating film that covers the lower electrode of the gate electrode is equal to a film thickness of the insulating film that covers the upper electrode.
摘要:
A vertical JFET with a ladder termination may be made by a method using a limited number of masks. A first mask is used to form mesas and trenches in active cell and termination regions simultaneously. A mask-less self-aligned process is used to form silicide source and gate contacts. A second mask is used to open windows to the contacts. A third mask is used to pattern overlay metallization. An optional fourth mask is used to pattern passivation. Optionally the channel may be doped via angled implantation, and the width of the trenches and mesas in the active cell region may be varied from those in the termination region.
摘要:
A field effect transistor structure having a semiconductor having a source region, a drain region, and a gate contact region disposed between the source region and the drain region; and a gate electrode having a stem section extending from a top section of the gate electrode to, and in Schottky contact with, the gate contact region. The stem section has an upper portion terminating at the top portion of the gate electrode and a bottom portion narrower than the upper portion, the bottom portion terminating at the gate contact region. The bottom portion of the stem has a step between the upper portion of the stem section and the bottom portion of the stem section in only one side of the stem section. The step of the stem section provides an asymmetric field plate for the field effect transistor.
摘要:
A method for processing a semiconductor includes irradiating a surface of a semiconductor with ions of a first gas type for cleaning the surface and implanting of ions of a second gas type in a region below the surface of the semiconductor for creating defects in the region below the surface. The irradiating and the implanting are performed within the same chamber.
摘要:
A semiconductor device may include a first inverter, a second inverter, a first access transistor, and a second access transistor. A drain electrode of the first access transistor or a source electrode of the first access transistor may be electrically connected to both an output terminal of the first inverter and an input terminal the second inverter. The drain electrode of the first access transistor may be asymmetrical to the source electrode of the first access transistor with reference to a gate electrode of the first access transistor. A drain electrode of the second access transistor or a source electrode of the second access transistor may be electrically connected to both an output terminal of the second inverter and an input terminal the first inverter.
摘要:
A method for fabricating a semiconductor device includes receiving a gated finned substrate comprising an isolation layer with a semiconductor fin formed thereon and a gate formed over the semiconductor fin, depositing an atomic layer of dopant on a portion of the semiconductor fin that is laterally adjacent to the gate, forming a lateral spacer on a sidewall of the gate and above a gate extension portion of the atomic layer of dopant, and epitaxially growing a raised source or drain region on the semiconductor fin, that is laterally adjacent to the lateral spacer, from the atomic layer of dopant. The method may also include conducting a low temperature annealing process to diffuse the atomic layer of dopant to the raised source or drain region of the semiconductor fin. A corresponding apparatus is also disclosed herein.
摘要:
A method of producing a trench gate type MOSFET is provided in which each intersection trench is formed as a two-stage trench structure. A gate trench is backfilled with a mask material and the mask material is then patterned to form a mask used for forming each intersection trench. The intersection trench intersecting the gate trench is provided so as to be deeper than the gate trench. A Schottky electrode is provided in the bottom of each intersection trench 10p. In this manner, there is provided a trench gate type semiconductor device and a method of producing the same, in which: the cell pitch can be reduced even when a wide band gap semiconductor is used as a main semiconductor substrate; good ohmic contacts can be obtained; and an excessive electric field is prevented from being applied to an insulating film in the bottom of each trench.
摘要:
A method for forming a field-effect semiconductor device includes: providing a wafer having a main surface and a first semiconductor layer of a first conductivity type; forming at least two trenches from the main surface partly into the first semiconductor layer so that each of the at least two trenches includes, in a vertical cross-section substantially orthogonal to the main surface, a side wall and a bottom wall, and that a semiconductor mesa is formed between the side walls of the at least two trenches; forming at least two second semiconductor regions of a second conductivity type in the first semiconductor layer so that the bottom wall of each of the at least two trenches adjoins one of the at least two second semiconductor regions; and forming a rectifying junction at the side wall of at least one of the at least two trenches.
摘要:
A MOS P-N junction Schottky diode device includes a substrate having a first conductivity type, a field oxide structure defining a trench structure, a gate structure formed in the trench structure and a doped region having a second conductivity type adjacent to the gate structure in the substrate. An ohmic contact and a Schottky contact are formed at different sides of the gate structure. The method for manufacturing such diode device includes several ion-implanting steps to form several doped sub-regions with different implantation depths to constitute the doped regions. The formed MOS P-N junction Schottky diode device has low forward voltage drop, low reverse leakage current, fast reverse recovery time and high reverse voltage tolerance.