摘要:
A scintillation detector comprising nano-scale particles of a scintillation compound embedded in a plastic matrix is provided. The nano-scale particles may be made from metal oxides, metal oxyhalides, metal oxysulfides, or metal halides. Methods are provided for preparing the nano-scale particles. The particles may be coated with organic compounds or polymers prior to incorporation in the plastic matrix. A technique for matching the refractive index of the plastic matrix with the nano-scale particles by incorporating nano-scale particles of titanium dioxide is also provided. The scintillator may be coupled with one or more photodetectors to form a scintillation detection system. The scintillation detection system may be adapted for use in X-ray and radiation imaging devices, such as digital X-ray imaging, mammography, CT, PET, or SPECT, or may be used in radiation security detectors or subterranean radiation detectors.
摘要:
A scintillation detector comprising nano-scale particles of a scintillation compound embedded in a plastic matrix is provided. The nano-scale particles may be made from metal oxides, metal oxyhalides, metal oxysulfides, or metal halides. Methods are provided for preparing the nano-scale particles. The particles may be coated with organic compounds or polymers prior to incorporation in the plastic matrix. A technique for matching the refractive index of the plastic matrix with the nano-scale particles by incorporating nano-scale particles of titanium dioxide is also provided. The scintillator may be coupled with one or more photodetectors to form a scintillation detection system. The scintillation detection system may be adapted for use in X-ray and radiation imaging devices, such as digital X-ray imaging, mammography, CT, PET, or SPECT, or may be used in radiation security detectors or subterranean radiation detectors.
摘要:
Crystalline scintillator materials comprising nano-scale particles of metal oxides, metal oxyhalides and metal oxysulfides are provided. The nano-scale particles are less than 100 nm in size. Methods are provided for preparing the particles. In one method, used to form oxyhalides and oxysulfides, metal salts are dissolved in water, and then precipitated out as fine particles using an aqueous base. After the particles are separated from the solution, they are annealed under a flow of a water saturated hydrogen anion gas, such as HCl or H2S, to form the crystalline scintillator particles. The other methods take advantage of the characteristics of microemulsion solutions to control droplet size, and, thus, the particle size of the final nano-particles. For example, in one method, a first micro-emulsion containing metal salts if formed. The first micro-emulsion is mixed with an aqueous base in a second micro-emulsion to form the final nano-scale particles.
摘要:
Crystalline scintillator materials comprising nano-scale particles of metal oxides, metal oxyhalides and metal oxysulfides are provided. The nano-scale particles are less than 100 nm in size. Methods are provided for preparing the particles. In one method, used to form oxyhalides and oxysulfides, metal salts are dissolved in water, and then precipitated out as fine particles using an aqueous base. After the particles are separated from the solution, they are annealed under a flow of a water saturated hydrogen anion gas, such as HCl or H2S, to form the crystalline scintillator particles The other methods take advantage of the characteristics of microemulsion solutions to control droplet size, and, thus, the particle size of the final nano-particles. For example, in one method, a first micro-emulsion containing metal salts if formed. The first micro-emulsion is mixed with an aqueous base in a second micro-emulsion to form the final nano-scale particles.
摘要:
Crystalline scintillator materials comprising nano-scale particles of metal oxides, metal oxyhalides and metal oxysulfides are provided. The nano-scale particles are less than 100 nm in size. Methods are provided for preparing the particles. In one method, used to form oxyhalides and oxysulfides, metal salts are dissolved in water, and then precipitated out as fine particles using an aqueous base. After the particles are separated from the solution, they are annealed under a flow of a water saturated hydrogen anion gas, such as HCl or H2S, to form the crystalline scintillator particles. The other methods take advantage of the characteristics of microemulsion solutions to control droplet size, and, thus, the particle size of the final nano-particles. For example, in one method, a first micro-emulsion containing metal salts if formed. The first micro-emulsion is mixed with an aqueous base in a second micro-emulsion to form the final nano-scale particles.
摘要:
A method is provided that includes heating a powder to a temperature that is below the melting point of the scintillator composition but is sufficiently high to form a coherent mass. The powder includes a scintillator composition. The coherent mass is polycrystalline and has a pulse height resolution that is less than 20 percent at 662 kilo electron volts; a light yield of more than 5000 photons per milli electron volt; or both a pulse height resolution that is less than 20 percent at 662 kilo electron volts and a light yield of more than 5000 photons per milli electron. A sintered body is provided also.
摘要:
A polycrystalline scintillator composition is provided. The polycrystalline scintillator composition is capable of being sintered to form a body having a pulse height resolution that is less than about 20 percent at 662 kilo electron volts. Also, an article formed form the polycrystalline scintillator composition is provided, as well as a radiation detector including the article.
摘要:
A method of making a cubic halide scintillator material includes pressing a powder mixture of cubic halide and at least one activator under conditions of pressure, temperature, residence time and particle size effective to provide a polycrystalline sintered cubic halide scintillator having a pulse height resolution of from about 7% to about 20%. The conditions include a temperature ranging from about ambient temperature up to about 90% of the melting point of the cubic halide, a pressure of from about 30,000 psi to about 200,000 psi, a pressing residence time of from about 5 minutes to about 120 minutes and an average cubic halide particle size of from about 60 micrometers to about 275 micrometers.
摘要:
A method of manufacturing a detector array for an imaging system, the method comprising providing a pixelated scintillator having a plurality of lost molded pixels comprising a scintillator material adapted to detect radiation.
摘要:
A sensing element or detector activated by radiation comprising a first scintillator activated by gamma radiation; and a neutron sensing layer comprising a second scintillator activated by neutron radiation.