摘要:
A light-emitting diode (LED) apparatus includes a thermoconductive substrate, a thermoconductive adhesive layer, an epitaxial layer, a current spreading layer and a micro- or nano-roughing structure. The thermoconductive adhesive layer is disposed on the thermoconductive substrate. The epitaxial layer is disposed opposite to the thermoconductive adhesive layer and has a first semiconductor layer, an active layer and a second semiconductor layer. The current spreading layer is disposed between the second semiconductor layer of the epitaxial layer and the thermoconductive adhesive layer. The micro- or nano-roughing structure is disposed on the first semiconductor layer of the epitaxial layer. In addition, a manufacturing method of the LED apparatus is also disclosed.
摘要:
A light-emitting diode (LED) apparatus includes a thermoconductive substrate, a thermoconductive adhesive layer, an epitaxial layer, a current spreading layer and a micro- or nano-roughing structure. The thermoconductive adhesive layer is disposed on the thermoconductive substrate. The epitaxial layer is disposed opposite to the thermoconductive adhesive layer and has a first semiconductor layer, an active layer and a second semiconductor layer. The current spreading layer is disposed between the second semiconductor layer of the epitaxial layer and the thermoconductive adhesive layer. The micro- or nano-roughing structure is disposed on the first semiconductor layer of the epitaxial layer. In addition, a manufacturing method of the LED apparatus is also disclosed.
摘要:
A light-emitting diode (LED) apparatus includes a thermoconductive substrate, a thermoconductive adhesive layer, an epitaxial layer, a current spreading layer and a micro- or nano-roughing structure. The thermoconductive adhesive layer is disposed on the thermoconductive substrate. The epitaxial layer is disposed opposite to the thermoconductive adhesive layer and has a first semiconductor layer, an active layer and a second semiconductor layer. The current spreading layer is disposed between the second semiconductor layer of the epitaxial layer and the thermoconductive adhesive layer. The micro- or nano-roughing structure is disposed on the first semiconductor layer of the epitaxial layer. In addition, a manufacturing method of the LED apparatus is also disclosed.
摘要:
The present invention provides a method to fabricate a diode whose heat stability is improved. The diode has a layer of high reflective ohmic contact and an alloy metal is used in the layer. With the alloy metal used in the layer, the heat stability of the diode is improved.
摘要:
A method for fabricating a light emitting diode (LED) is provided. First, a first type doped semiconductor layer, an emitting layer and a second type doped semiconductor layer are sequentially formed on an epitaxy substrate. Then, a first transparent conductive layer is formed on the second type doped semiconductor layer. Next, a substitution substrate having a second transparent conductive layer formed thereon is provided. Then, a wafer bonding process is performed on the epitaxy substrate and the substitution substrate, so as to bond the first transparent conductive layer and the second transparent conductive layer. Finally, the epitaxy substrate is removed. As mentioned above, an LED with better reliability is fabricated according to the method provided by the present invention. Moreover, the present invention further provides an LED.
摘要:
A method for fabricating a light emitting diode (LED) is provided. A first-type doped semiconductor layer, a light emitting layer and a second-type doped semiconductor layer are formed on an epitaxy substrate sequentially. Then, a gold layer is formed on the second-type doped semiconductor layer. Next, a bonding substrate is provided. The bonding substrate includes a silicon substrate and a germanium-contained layer disposed on the silicon substrate. Then, a bonding process is performed on the bonding substrate and the gold layer. Next, the epitaxy substrate is removed. Accordingly, a LED with better reliability and light-emitting efficiency can be made. Moreover, a LED is also provided.
摘要:
A method for aligning gesture features of image is disclosed. An input gesture image is captured, and then a closed curve formed by a binary contour image of the gesture image is determined by processing the gesture image. A curvature scale space (CSS) image of the gesture image is drawn based on the closed curve. A convolution operation is performed with respect to the sequence of a coordinate-peak set formed by the CSS image and a predefined function to designate the coordinate with maximal value of integration as a basis point for obtaining a feature parameter of the gesture image. Finally, comparing the feature parameter of the gesture image with each feature parameter of a plurality of reference gesture shapes, thereby determining a gesture shape corresponding to the gesture image.
摘要:
The present invention provides methods and kits for detecting human cytomegalovirus. The present invention also provides oligonucleotides for detecting human cytomegalovirus.
摘要:
A method for fabricating a light emitting diode (LED) is provided. Successively forming a first type doped semiconductor layer, a light emitting layer and a second type doped semiconductor layer on an epitaxy substrate; forming a bonding layer thereon; bonding a transferring substrate with the bonding layer; removing the epitaxy substrate; removing a part of the first type doped semiconductor layer, the light emitting layer and the second type doped semiconductor layer for exposing a part of the bonding layer; patterning the bonding layer to form a first and a second bonding portion isolated from each other, wherein the first type doped semiconductor layer, the light emitting layer and the second type doped semiconductor layer are disposed on the first bonding portion; forming a pad on the first type doped semiconductor layer; and forming a conducting wire for electrically connecting the pad and the second bonding portion.
摘要:
A solder composition for reacting with aluminum is provided. The main alloying components in the solder includes tin (Sn), zinc (Zn) and chromium (Cr) with 0.01 wt % to 20 wt % zinc and 0.01 wt % to 20 wt % chromium.