摘要:
An air flow measuring device takes in part of intake air flowing through an intake passage. The device includes a housing and a sensor. The housing defines a bypass flow passage through which taken-in intake air passes and which has an outlet that opens on an outer wall of the housing. The sensor is accommodated in the bypass passage to produce an electrical signal as a result of heat transfer between taken-in intake air and the sensor. The outlet of the bypass passage includes vertical and non-vertical openings. The vertical opening opens toward a downstream side of a flow of intake air in the intake passage and is provided perpendicular to the flow of intake air. The non-vertical opening is provided non-perpendicularly to the flow of intake air in the intake passage. The outlet is a continuous stretch of opening where the vertical and non-vertical openings are continuously formed.
摘要:
An air flow measuring device takes in part of intake air flowing through an intake passage. The device includes a housing and a sensor. The housing defines a bypass flow passage through which taken-in intake air passes and which has an outlet that opens on an outer wall of the housing. The sensor is accommodated in the bypass passage to produce an electrical signal as a result of heat transfer between taken-in intake air and the sensor. The outlet of the bypass passage includes vertical and non-vertical openings. The vertical opening opens toward a downstream side of a flow of intake air in the intake passage and is provided perpendicular to the flow of intake air. The non-vertical opening is provided non-perpendicularly to the flow of intake air in the intake passage. The outlet is a continuous stretch of opening where the vertical and non-vertical openings are continuously formed.
摘要:
A bypass passage receives a part of air flowing through a duct. A sub-bypass passage is branched from an intermediate portion of the bypass passage to separate dust contained in air flowing through the duct. A flow rate sensor is located in the sub-bypass passage for detecting the flow rate of air. A first wall surface and a second wall surface of the bypass passage are located upstream from the branch. The first wall surface is located on the side of the branch. The second wall surface is opposed to the first wall surface. Both the first wall surface and the second wall surface are curved to direct airflow to move away from the branch.
摘要:
A flow detecting device is provided to a fluid passage through which a main flow of fluid passes. A sensor body has a bypass passage through which a bypass flow passes from the main flow. The bypass passage has a bent portion, which is located midway through the bypass passage, and an outflow passage, which is located downstream of the bent portion. The flow direction of the bypass flow changes at the bent portion toward the outflow passage through the bypass passage. A heating element is arranged in the bypass passage. The heating element generates heat by being supplied with electricity for detecting a flow amount of fluid. The sensor body has a side surface defining an opening through which dynamic pressure caused by counterflow is released to an outside of the outflow passage when fluid causes counterflow in the fluid passage in a direction opposite to a flow direction of the main flow.
摘要:
A substrate includes a first surface portion, which covers a heat receiving portion of a radiation member together with a resinous member. The substrate further includes a second surface portion, which is on the outer periphery of the first surface portion. The substrate makes contact with the resinous member via the second surface portion. The first surface portion and the heat receiving portion have a first contact boundary therebetween. The second surface portion and the resinous member have a second contact boundary that surrounds the first contact boundary. The second contact boundary is sealed using a sealing member. The sealing member is restricted from flowing into a boundary between the first contact boundary and the second contact boundary.
摘要:
A fluid flow detecting apparatus is disclosed for detecting a characteristic of fluid flowing in a fluid passage. The fluid flow detecting apparatus includes a sensor body that defines a bypass passage for flow of a portion the fluid flowing in the fluid passage. The apparatus also includes a sensor provided in the bypass passage for detecting the characteristic of the fluid flowing in the bypass passage and a plurality of plates. The sensor body is provided between the plurality of plates. Each of the plates has a width dimension oriented approximately along the direction of flow of fluid flowing in the fluid passage. The width of the plates is greater than a corresponding width dimension of the sensor body such that the sensor body is inside a region defined between the plates.
摘要:
An airflow meter has a bypass passage disposed in an air passage and a sensing portion disposed in the bypass passage to detect an airflow amount. The bypass passage is provided with a restriction portion to gradually decrease a passage width of the bypass passage in an airflow direction in the bypass passage. The restriction portion includes a first restriction portion and the second restriction portion disposed at an immediately downstream side of a narrowest portion of the first restriction portion. The first restriction portion gradually decreases the passage width in the airflow direction. The second restriction portion increases the passage width than the passage width at the narrowest portion in a stepped manner. The sensing portion is located in a bound in which the restriction portion is disposed.
摘要:
A throttle device comprises a throttle valve having a circular body and a compensation member made of resin. The body has an upstream half rotatable at an upstream side with respect to a throttle shaft and a downstream half rotatable at a downstream side with respect thereto. The compensation member is installed on the upstream half at a downstream side thereof and bulged toward an inner wall of a throttle body. When the throttle valve rotates in an open direction from a closed position, the area of an intake air passage at the upstream half is smaller than the area of a passage at the downstream half and thus, the difference between the flow velocity at the upstream half and that at the downstream half can be reduced. Accordingly, it is possible to restrict the flow of the intake air from becoming oblique to the axis of the intake air passage and hence measure the flow rate of the intake air accurately.
摘要:
An air flow measuring device has a throttle portion provided in a first sub-passage, a second sub-passage branched from the first sub-passage at an upstream side of the throttle portion, and a flow amount sensor located in the second sub-passage. The second sub-passage is configured to introduce therein a part of air flowing in the first sub-passage, and an inlet of the second sub-passage is open into the first sub-passage at one side in a first radial direction perpendicular to a flow direction of air flowing in the first sub-passage. Furthermore, the throttle portion is provided to gradually reduce a passage dimension of the first sub-passage in a second radial direction, as toward an outlet of the first sub-passage. Here, the second radial direction is perpendicular to a surface defined by the first radial direction and the flow direction of air in the first sub-passage.
摘要:
A sensing unit is constructed of a heater element and a temperature sensing element. The sensing unit is arranged in a region, in which measurement air, which flows into the inflow passage through the bypass inlet, bends at the substantially right-angle and contracts in flow. Alternatively, the sensing unit is arranged in a region immediately after an area, in which the measurement air flowing through the bypass inlet bends at the substantially right-angle. The lengthwise directions of the heater element and the temperature sensing element are respectively arranged to be in parallel with both thickness-wise side faces of the measurement body. Thereby, even when a flow rate of measurement air changes, an influence due to the change can be restricted from being exerted. Therefore, the maximum flow rate can be measured within the lengthwise range of the heater element from a low flow rate to a high flow rate.