摘要:
A signal light passes through an isolator, and is coupled by a coupler with a pump light from a pump light source. Then, the signal light passes through an ASE reflection filter, is amplified by an EDF, and is transmitted from an isolator. At this time, an ASE light having a predetermined wavelength among ASE lights that occur within the EDF and proceed to the ASE reflection filter is reflected and again input to the EDF. By setting the predetermined wavelength to a wavelength on the short wavelength side of an amplification band of the EDF, gain deviation occurring on the long wavelength side of the amplification band can be cancelled.
摘要:
Multi-wavelength light is inputted to an erbium-doped fiber as an optical amplification medium. Pump light is supplied to this erbium-doped fiber. When a transition from a state signal light on the short wavelength area in the multi-wavelength is input in the erbium-doped fiber to a state the signal light is not input, the output power of signal light on the long wavelength area in the multi-wavelength light can vary. The wavelength of pump light is selected in such a way that the output power of the signal light on the long wavelength area can not be negative when the power varies.
摘要:
Multi-wavelength light is inputted to an erbium-doped fiber as an optical amplification medium. Pump light is supplied to this erbium-doped fiber. When a transition from a state signal light on the short wavelength area in the multi-wavelength is input in the erbium-doped fiber to a state the signal light is not input, the output power of signal light on the long wavelength area in the multi-wavelength light can vary. The wavelength of pump light is selected in such a way that the output power of the signal light on the long wavelength area can not be negative when the power varies.
摘要:
Multi-wavelength light is inputted to an erbium-doped fiber as an optical amplification medium. Pump light is supplied to this erbium-doped fiber. When a transition from a state signal light on the short wavelength area in the multi-wavelength is input in the erbium-doped fiber to a state the signal light is not input, the output power of signal light on the long wavelength area in the multi-wavelength light can vary. The wavelength of pump light is selected in such a way that the output power of the signal light on the long wavelength area can not be negative when the power varies.
摘要:
A rare earth element doped fiber forming an optical amplifier is pumped with a plurality of pumping lights to prevent drop of the inversion population ratio in the length direction of the rare earth element doped fiber.
摘要:
An optical amplification device which includes first and second optical amplifiers, and a controller. The first optical amplifier receives a light and amplifies the received light. The second optical amplifier receives the light amplified by the first optical amplifier, and amplifies the received light. When a level of the light received by the first optical amplifier changes by Δ, the controller controls a level of the light received by the second optical amplifier to change by approximately −Δ. In various embodiments, the controller causes the sum of the gains of the first and second optical amplifiers to be constant. In other embodiments, the optical amplification device includes first and second optical amplifier and a gain adjustor. The gain adjustor detects a deviation in gain of the first optical amplifier from a target gain, and adjusts the gain of the second optical amplifier to compensate for the detected deviation.
摘要:
An optical amplification device which includes first and second optical amplifiers, and a controller. The first optical amplifier receives a light and amplifies the received light. The second optical amplifier receives the light amplified by the first optical amplifier, and amplifies the received light. When a level of the light received by the first optical amplifier changes by Δ, the controller controls a level of the light received by the second optical amplifier to change by approximately −Δ. In various embodiments, the controller causes the sum of the gains of the first and second optical amplifiers to be constant. In other embodiments, the optical amplification device includes first and second optical amplifier and a gain adjustor. The gain adjustor detects a deviation in gain of the first optical amplifier from a target gain, and adjusts the gain of the second optical amplifier to compensate for the detected deviation.
摘要:
An optical amplifier amplifies a wavelength division-multiplexed optical input signal composed of optical signals having different wavelengths such that the output level of each of the optical signal is always optimized and such that the difference between the gains of the amplifier on the optical signals is minimized when the number of optical signals is two. The output level of the amplifier is controlled according to the number of the optical signals, to optimize the output level of each of the optical signals.
摘要:
An optical amplification device which includes first and second optical amplifiers, and a controller. The first optical amplifier receives a light and amplifies the received light. The second optical amplifier receives the light amplified by the first optical amplifier, and amplifies the received light. When a level of the light received by the first optical amplifier changes by Δ, the controller controls a level of the light received by the second optical amplifier to change by approximately −Δ. In various embodiments, the controller causes the sum of the gains of the first and second optical amplifiers to be constant. In other embodiments, the optical amplification device includes first and second optical amplifier and a gain adjustor. The gain adjustor detects a deviation in gain of the first optical amplifier from a target gain, and adjusts the gain of the second optical amplifier to compensate for the detected deviation.
摘要:
An optical amplification device which includes first and second optical amplifiers, and a controller. The first optical amplifier receives a light and amplifies the received light. The second optical amplifier receives the light amplified by the first optical amplifier, and amplifies the received light. When a level of the light received by the first optical amplifier changes by &Dgr;, the controller controls a level of the light received by the second optical amplifier to change by approximately −&Dgr;. In various embodiments, the controller causes the sum of the gains of the first and second optical amplifiers to be constant. In other embodiments, the optical amplification device includes first and second optical amplifier and a gain adjustor. The gain adjustor detects a deviation in gain of the first optical amplifier from a target gain, and adjusts the gain of the second optical amplifier to compensate for the detected deviation.