摘要:
A value of electric current flowing a neck to a melt is detected, and it is judged that a breaking of the neck occurs when the detected value has been zero, and then a seed is lowered to dip a broken part on the melt. After that the seed is lifted again to restart a pulling operation.
摘要:
There is described an apparatus for producing a single crystal ingot capable of stably manufacturing a single crystal ingot by means of the Czochralski method, without being affected by influence of variation in extension of wires or an offset in points clamped by a clamping member. The clamping member is engaged with an engagement step formed in a single crystal which is being pulled by the CZ method, and the single crystal is pulled. The single crystal ingot manufacturing apparatus is provided with a flexible mechanism for absorbing variation in extension of the wires, in intermediate portions of the wires. Variation in extension of the wires is eliminated by means of the flexible mechanism, thereby retaining the single crystal in an upright position. Further, a sacrifice member which deforms so as to conform to the circumference of the engagement step is interposed between the clamping member and the engagement step, thereby preventing occurrence of cracking or deformation in the single crystal.
摘要:
A single crystal pulling method includes the steps of: immersing seed crystal in a melt; growing single crystal around the seed crystal and reducing its diameter to remove dislocation in the single crystal; prior to forming a straight waist product portion of single crystal having a prescribed diameter, forming a straight waist holding portion having a diameter smaller than the prescribed diameter; holding the straight waist holding portion by using a single crystal holding device; and pulling the straight waist product portion while the straight waist holding portion is held. Preferably the step of forming the straight waist holding portion includes a step of varying a pulling speed to make unevenness in the surface thereof.
摘要:
A seed crystal 1 for manufacturing a single crystal incorporating an unconformity portion B formed at a predetermined position apart from a leading end thereof and structured to conduct the heat of melt and interrupt propagation of dislocation caused from thermal stress produced when dipping in the melt has been performed.
摘要:
An object of the invention is to provide a single crystal clamping device and a single crystal supporting method. The single crystal clamping device does not become inclined and does not vibrate, and the center of the single crystal clamping device is congruous to the center of the growing single crystal. An apparatus for pulling up single crystals of the present invention, comprises: a single crystal pulling up wire for pulling up a seed crystal immersed in a melt of a raw material; a single crystal clamping device for clamping one end of the single crystal grown beneath the seed crystal; a wire-winding mechanism fixed on the single crystal clamping means and winding up the single crystal pulling up wire so as to adjust a speed of the single-crystal pulling up wire corresponding to the ascending/descending speeds of the single crystal clamping device; a pulling up wire-load cell for detecting the load applied on the crystal; and a summation load cell for measuring the combined load applied on the crystal pulling up wire and the single crystal clamping device.
摘要:
A crystal-clamping fixture 30 is suspended by a pulling up mechanism 1 through the use of wires. The crystal-clamping fixture 30 includes a box 31 and a plurality of holding rods 32. The box 31 has two openings formed on its top and bottom sides. The reduced portion 2a, the enlarged portion 2b and the necked portion 2c formed beneath the seed crystal 5 are allowed to penetrate through the two openings during the pulling up operation. A plurality of "S" shaped slots 31a, 31b are formed on the lateral sides of the box 31. The holding rods 32 capable of rotating along the path of the "S" shaped slots 31a, 31b are horizontally disposed within the box 31 by inserting their two end portions through the "S" shaped slots 31a, 31b. The holding rods kept restrained at the upper ends of the "S" shaped slots are pushed out by the conic surface formed at the upper part of the enlarged portion 2b and rotate and descend to reach the lower ends of the "S" shaped slots. At the time the crystal-clamping fixture 30 is directed to ascend a small distance, then the holding rods 32 contact the conic surface formed between the enlarged portion 2b and the necked portion 2c to clamp the single crystal 2.
摘要:
A process for producing a single-crystal semiconductor and an apparatus therefor. A single-crystal semiconductor of large diameter and large weight can be lifted with the use of existing equipment not having any substantial change thereto while not influencing the oxygen concentration of single-crystal semiconductor and the temperature of melt and while not unduly raising the temperature of seed crystal. In particular, the relationship (L1, L2, L3) between the allowable temperature difference (ΔT) and the diameter (D) of seed crystal (14) is preset so that the temperature difference between the seed crystal (14) at the time the seed crystal (14) is immersed in the melt and the melt (5) falls within the allowable temperature difference (ΔT) at which dislocations are not introduced into the seed crystal (14). In accordance with the relationship (L1, L2, L3), the allowable temperature difference (ΔT) corresponding to the diameter (D) of seed crystal (14) to be immersed in the melt is determined. Temperature control is conducted so that at the time the seed crystal (14) is immersed in the melt (5) the temperature difference between the seed crystal (14) and the melt (5) falls within the determined allowable temperature difference (ΔT).
摘要:
The present invention is to produce a silicon crystal wherein the boron concentration in the silicon crystal and the growth condition V/G are controlled so that the boron concentration in the silicon crystal is no less than 1×1018 atoms/cm3 and the growth condition V/G falls within the epitaxial defect-free region α2 whose lower limit line LN1 is the line indicating that the growth rate V gradually drops as the boron concentration increases. A silicon wafer is also produced wherein the boron concentration in the silicon crystal and the growth condition V/G are controlled so as to include at least the epitaxial defect region β1, and both the heat treatment condition and the oxygen concentration of the silicon crystal are controlled so that no OSF nuclei grow to OSFs.
摘要:
The present invention employs the construction wherein a resistor heater is disposed inside a protective cylinder whose tip is open to a molten liquid packing zone of a crucible inside a pulling apparatus so that the resistor heater is above the tip of a lower portion and temperature setting can be made so as to be capable of fusing a starting material. Since the tip of the protective cylinder is positioned inside the molten liquid at the time of pulling of a single crystal, the gaseous phase portion inside the protective cylinder and the gaseous phase portion inside the pulling apparatus are separated apart by the molten liquid and are independent of each other and a starting material polycrystal rod loaded into the protective cylinder can be supplied to the molten liquid surface inside the crucible while being molten at the lower part of the protective cylinder by the resistor heater. In this manner, the single crystal whose impurity concentration is substantially uniform in the longitudinal direction can be grown continuously.
摘要:
The present invention is to produce a silicon crystal wherein the boron concentration in the silicon crystal and the growth condition V/G are controlled so that the boron concentration in the silicon crystal is no less than 1×1018 atoms/cm3 and the growth condition V/G falls within the epitaxial defect-free region α2 whose lower limit line LN1 is the line indicating that the growth rate V gradually drops as the boron concentration increases. Further, the present invention is to produce a silicon wafer wherein the boron concentration in the silicon crystal and the growth condition V/G are controlled so as to include at least the epitaxial defect region β1, and the heat treatment condition of the silicon crystal and the oxygen concentration in the silicon crystal are controlled so that no OSF nuclei grow to OSFs. Moreover, the present invention is to produce a silicon crystal wherein the boron concentration in the silicon crystal and the growth condition V/G are controlled so that they fall in the vicinity of the lower limit line LN3 within the epitaxial defect-free region α1.