Control system and method for controlled object in time variant system with dead time, such as single crystal production device by czochralski method
    1.
    发明授权
    Control system and method for controlled object in time variant system with dead time, such as single crystal production device by czochralski method 有权
    时变系统中受控对象的控制系统和方法,如单晶生产装置,采用切克劳斯基法

    公开(公告)号:US08150784B2

    公开(公告)日:2012-04-03

    申请号:US11989749

    申请日:2006-06-07

    CPC分类号: C30B15/20 C30B29/06

    摘要: A device controls an object in a time variant system with a dead time such as a Czochralski method single crystal production device (CZ equipment). The dead time, time constant, and process gain value of an object (CZ equipment) are set. The process gain preset value has time variant characteristics. An output value and its first-order and second-order time differentiated values serve as the state variable. A nonlinear state predicting unit predicts a state variable value at a future time, based upon the current output value, dead time, time constant, and process gain preset value. A gain scheduled sliding mode control unit performs a gain scheduled sliding mode control operation based upon the state variable value at the future time, an output deviation at the future time, the time constant, and the set value of the process gain at the future time, to determine the manipulated variable of the object.

    摘要翻译: 设备控制具有死区时间的时变系统中的对象,如Czochralski方法单晶生产设备(CZ设备)。 设置物体(CZ设备)的死区时间,时间常数和过程增益值。 过程增益预设值具有时变特征。 输出值及其一阶和二阶时间微分值作为状态变量。 非线性状态预测单元​​基于当前输出值,死区时间,时间常数和过程增益预设值来预测未来时间的状态变量值。 增益调度滑动模式控制单元基于未来时间的状态变量值,未来时间的输出偏差,时间常数和未来时间的处理增益的设定值来执行增益调度滑模控制操作 ,以确定对象的操纵变量。

    Single Crystal Semiconductor Manufacturing Apparatus and Manufacturing Method
    3.
    发明申请
    Single Crystal Semiconductor Manufacturing Apparatus and Manufacturing Method 有权
    单晶半导体制造装置及制造方法

    公开(公告)号:US20090133617A1

    公开(公告)日:2009-05-28

    申请号:US11992510

    申请日:2006-09-25

    IPC分类号: C30B15/14

    摘要: An upper side heater 10 is configured so that a current passage width becomes larger at a heater lower part than at a heater upper part. Thus, the upper side heater 10 has a current-carrying cross-sectional area which becomes larger at the heater lower part than at the heater upper part, a resistance value becomes accordingly smaller at the heater lower part than at the heater upper part, and a heat generation amount becomes relatively smaller at the heater lower part than at the heater upper part. Meanwhile, a lower side heater 20 is configured so that the current passage width becomes larger at the heater upper part than at the heater lower part. Thus, the current-carrying cross-sectional area of the lower side heater 20 becomes larger at the heater upper part than at the heater lower part, a resistance value becomes accordingly smaller at the heater upper part than at the heater lower part, and a heat generation amount becomes relatively smaller at the heater upper part than at the heater lower part.

    摘要翻译: 上侧加热器10被构造成使得电流通道宽度在加热器下部比在加热器上部处变大。 因此,上侧加热器10具有比加热器上部在加热器下部变大的载流横截面积,加热器下部的电阻值相对于加热器上部部分相应地变小, 加热器下部的加热器上部发热量变得相对较小。 同时,下侧加热器20被构造成使得当前通路宽度在加热器上部比在加热器下部处变大。 因此,下侧加热器20的通电截面积在加热器上部比加热器下部变大,加热器上部的电阻值比加热器下部相应变小, 发热量在加热器上部比在加热器下部变得相对较小。

    Silicon wafer for hydrogen heat treatment and method for manufacturing
the same
    6.
    发明授权
    Silicon wafer for hydrogen heat treatment and method for manufacturing the same 失效
    氢热处理用硅片及其制造方法

    公开(公告)号:US06056931A

    公开(公告)日:2000-05-02

    申请号:US14048

    申请日:1998-01-27

    CPC分类号: C30B33/02 C30B29/06 C30B33/00

    摘要: In growing silicon single crystals by the CZ method, the cooling rate in the 1150-1080.degree. C. temperature zone (defect-forming temperature range) where the grown-in defects are formed is set at more than 2.0.degree. C./min to manufacture single crystals having an as-grown LSTD density of larger than 3.0.times.10.sup.6 /cm.sup.3 or a FPD density of larger than 6.0.times.10.sup.5 /cm.sup.3. As this single crystal has a small defect size, thus the dissolution rate of the defects increases by the heat treatment in a non-oxidizing atmosphere containing a hydrogen gas, so the effect of the hydrogen heat treatment can extend to the depth more than 3 .mu.m from the wafer surface.

    摘要翻译: 在通过CZ法生长的硅单晶中,形成生长缺陷的1150-1080℃温度区(缺陷形成温度范围)中的冷却速度设定在2.0℃/ min以上 制造具有大于3.0×10 6 / cm 3的生长的LSTD密度或大于6.0×10 5 / cm 3的FPD密度的单晶。 由于该单晶具有小的缺陷尺寸,因此通过在含有氢气的非氧化性气氛中的热处理而使缺陷的溶解速度增加,因此氢热处理的效果可以延伸至3μm以上的深度 m。

    Method for manufacturing single crystal
    7.
    发明授权
    Method for manufacturing single crystal 有权
    单晶制造方法

    公开(公告)号:US06179911B2

    公开(公告)日:2001-01-30

    申请号:US09425019

    申请日:1999-10-25

    IPC分类号: C30B1520

    摘要: This invention provides a method and a apparatus capable of manufacturing single crystals with an oxygen density of less than 12×1017 atoms/cm3 or less than 10×1017 atoms/cm3, and wherein the oxygen density of the single crystal produced is uniformly distributed along its longitudinal axis. The electrical power inputted into the main heater 6 surrounding the quartz crucible 4 and the top heater 9 shaped like a reverse frustrated cone and disposed above the quartz crucible 4, is controlled to keep the temperature of the melt 5 in a preset range during the process of pulling up the single crystal silicon 10. When combining the main heater 6 and the top heater 9, the heat emitted from the main heater 6 can be kept small, and the heat load on the quartz crucible 4 and the amount of oxygen released from the quartz crucible 4 and dissloved into melt 5 can be reduced. Therefore, a single crystal of low oxygen density and with uniformly distributed oxygen density along its longitudinal axis can be obtained. Furthermore, the single-crystal silicon 10 can be assigned a proper thermal history. In the above process, if a magnetic field is applied to the melt, then single crystals of much lower oxygen density can be obtained.

    摘要翻译: 本发明提供一种能够制造氧密度小于12×10 17原子/ cm 3或小于10×10 17原子/ cm 3的单晶的方法和装置,其中所制造的单晶的氧密度沿其纵向轴线均匀分布。 控制输入​​到围绕石英坩埚4的主加热器6的电力以及设置在石英坩埚4上方的倒塌锥体形状的顶部加热器9,以在熔融过程中将熔体5的温度保持在预设范围内 拉起单晶硅10.当组合主加热​​器6和顶部加热器9时,可以将从主加热器6发射的热量保持较小,并且石英坩埚4上的热负荷和从 可以减少石英坩埚4并且被分解成熔体5。 因此,可以获得具有低氧密度并沿着其纵轴具有均匀分布的氧密度的单晶。 此外,单晶硅10可以被赋予适当的热历史。 在上述过程中,如果对熔体施加磁场,则可以获得低得多的氧密度的单晶。

    Single crystal pulling method
    9.
    发明授权
    Single crystal pulling method 失效
    单晶拉拔法

    公开(公告)号:US6042644A

    公开(公告)日:2000-03-28

    申请号:US121858

    申请日:1998-07-24

    IPC分类号: C30B15/22 C30B15/30 C30B15/32

    摘要: A single crystal pulling method includes the steps of: immersing seed crystal in a melt; growing single crystal around the seed crystal and reducing its diameter to remove dislocation in the single crystal; prior to forming a straight waist product portion of single crystal having a prescribed diameter, forming a straight waist holding portion having a diameter smaller than the prescribed diameter; holding the straight waist holding portion by using a single crystal holding device; and pulling the straight waist product portion while the straight waist holding portion is held. Preferably the step of forming the straight waist holding portion includes a step of varying a pulling speed to make unevenness in the surface thereof.

    摘要翻译: 单晶拉拔方法包括以下步骤:将晶种浸入熔体中; 在晶种周围生长单晶并减小其直径以去除单晶中的位错; 在形成具有规定直径的单晶的直腰部产品部分之前,形成直径小于规定直径的直腰部保持部; 通过使用单晶保持装置保持直腰部保持部; 并且在保持直腰部保持部的同时拉出直腰部产品部。 优选地,形成直腰部保持部的步骤包括改变拉拔速度以使其表面不均匀的步骤。

    Method for fabricating a single-crystal semiconductor
    10.
    发明授权
    Method for fabricating a single-crystal semiconductor 失效
    制造单晶半导体的方法

    公开(公告)号:US5968260A

    公开(公告)日:1999-10-19

    申请号:US829412

    申请日:1997-03-31

    摘要: A method for fabricating a single-crystal semiconductor by means of CZ method is disclosed. The method separates the single-crystal semiconductor from the melt by increasing the lift rate when the growth of a crystal body is finished. By controlling the lift rate, the single-crystal semiconductor is then gradually cooled within a range of an arbitrary crystal temperature, thereby forming a concave separated surface. The single-crystal semiconductor is cooled at a rate of lower than 35.degree. C./min when the temperature of the separated surface is within a range between the melting point and 1000.degree. C., or by keeping the temperature of the separated surface within a range between 1250.degree. C. and 1000.degree. C. for more than 30 minutes. Therefore, no dislocation is introduced in the crystal body, and productivity is improved.

    摘要翻译: 公开了一种通过CZ方法制造单晶半导体的方法。 该方法通过在结晶体的生长结束时提高提升速率将单晶半导体与熔体分离。 通过控制提升速度,然后在任意晶体温度的范围内逐渐冷却单晶半导体,从而形成凹分离表面。 当分离的表面的温度在熔点和1000℃之间的范围内时,或者通过将分离的表面的温度保持在1000℃以内,单晶半导体以低于35℃/分钟的速率被冷却 在1250℃和1000℃之间的范围内超过30分钟。 因此,在晶体中不引入位错,提高生产率。