Abstract:
A heat-assisted magnetic recording medium includes: a substrate; an underlayer; and a magnetic layer including an alloy having an L10 structure, wherein the underlayer includes, from the substrate side, a bcc underlayer including a substance having a bcc structure, a first oxide layer that is in contact with the bcc underlayer, and a second oxide layer that is in contact with the magnetic layer. The bcc underlayer, the first oxide layer, and the second oxide layer are stacked in the recited order. The first oxide layer and the second oxide layer include magnesium oxide, and the second oxide layer further includes one or more compounds selected from the group consisting of vanadium oxide, vanadium nitride, and vanadium carbide.
Abstract:
A magnetic recording medium includes a substrate, an underlayer, and a magnetic layer that are arranged in this order. The magnetic layer has a granular structure including magnetic grains having a L10 crystal structure, and grain boundary parts having a volume fraction in a range of 25 volume % to 50 volume %. The magnetic grains have a c-axis orientation with respect to the substrate. The grain boundary parts include a material having a lattice constant in a range of 0.30 nm to 0.36 nm, or in a range of 0.60 nm to 0.72 nm.
Abstract:
A magnetic recording medium includes a substrate, a barrier layer, a crystal grain size control layer, and a magnetic layer that are arranged in this order. The barrier layer includes at least one of oxides, nitrides, and carbides, and the crystal grain size control layer is a crystalline layer including Ag and having an average thickness in a range of 0.1 nm to 1 nm. The barrier layer makes contact with the crystal grain size control layer, and the magnetic layer includes an alloy having a L10 crystal structure and a (001) face orientation.
Abstract:
A magnetic recording medium includes a substrate, and a magnetic recording layer including magnetic grains having an L10 structure. The magnetic recording layer is (001) oriented, and a surface of growth of the magnetic recording layer includes a (001) plane, a (111) plane, and planes equivalent to the (111) plane. An area ratio of the (111) plane and the planes equivalent to the (111) plane, represented by (A111+A111e)/(A001+A111+A111e), is in a range of 0.2 to 0.7, where A111 denotes an area of the (111) plane, A111e denotes an area of the planes equivalent to the (111) plane, and A001 denotes an area of the (001) plane.
Abstract:
A magnetic recording medium includes: a substrate; an underlayer; a magnetic layer including an alloy having an L10 type crystal structure; and a protective layer, wherein the substrate, the underlayer, the magnetic layer, and the protective layer are stacked in the recited order. A pinning layer is further included between the magnetic layer and the protective layer, and the pinning layer includes a magnetic material including Co and includes at least one metal selected from the group consisting of Cu, Ag, Au, and Al.
Abstract:
A magnetic recording medium includes a substrate, an underlayer provided on the substrate, and a magnetic layer provided on the underlayer and having a L10 structure and a (001) orientation. The magnetic layer has a granular structure in which an organic compound having a methylene skeleton or a methine skeleton is arranged at grain boundaries of magnetic grains.
Abstract:
A method of manufacturing a magnetic recording medium is provided. The method includes: forming a magnetic layer 2 on a non-magnetic substrate 1; forming a mask layer 3 on the magnetic layer 2; forming a resist layer 4 which is patterned into a predetermined shape on the mask layer 3; patterning the mask layer 3 into a shape corresponding to the resist layer 4 using the resist layer 4; patterning the magnetic layer 2 into a shape corresponding to the mask layer 3 using the patterned mask layer 3; and removing the mask layer 3 that remains on the magnetic layer 2 by reactive plasma etching. The reactive plasma etching is performed under an atmosphere containing an organic compound having at least one kind or plural kinds of functional groups selected from a hydroxyl group, a carbonyl group, a hydroxy carbonyl group, an alkoxy group, and an ether group.
Abstract:
A magnetic recording medium includes a substrate, an underlayer formed on the substrate, and a magnetic layer formed on the underlayer. The magnetic layer includes an alloy having a L10 structure. The underlayer includes a first underlayer and a second underlayer. The first underlayer includes Mo and Ru, the content of Ru in the first underlayer is in a range of 5 atom % to 30 atom %, and the second underlayer includes a material having a body-centered cubic (BCC) structure. The second underlayer is formed between the first underlayer and the substrate.
Abstract:
A magnetic recording medium includes: a substrate; an underlayer; and a magnetic layer including an alloy having a L10 structure and a (001) orientation, wherein the substrate, the underlayer, and the magnetic layer are stacked in the recited order, and wherein the magnetic layer has a granular structure and includes a carbon hydride, a boron hydride, or a boron nitride hydride.
Abstract:
A heat-assisted magnetic recording medium includes: a substrate; an underlayer; and a magnetic layer that is (001)-oriented. In the magnetic layer, a first magnetic layer and a second magnetic layer are stacked in this order from the underlayer side. The first magnetic layer and the second magnetic layer include an alloy having an L10 structure. The second magnetic layer includes a ferrite at grain boundaries of magnetic grains. The ferrite is one or more kinds selected from the group consisting of NiFe2O4, MgFe2O4, MnFe2O4, CuFe2O4, ZnFe2O3, CoFe2O4, BaFe2O4, SrFe2O4, and Fe3O4. A Curie temperature of the magnetic grains is lower than a Curie temperature of the ferrite.