摘要:
A semiconductor device having assist features and manufacturing method thereof includes a substrate having at least an active region and a peripheral region defined thereon. The semiconductor device also includes a plurality of assist features positioned in the peripheral region, or in the active region with a dotted line pattern. The assist features are electrically connected to active circuits formed in the active region, respectively, for serving as redundant circuits that repair or replace defective circuits.
摘要:
A semiconductor manufacturing process is provided. First, a substrate is provided, wherein a patterned conductive layer, a dielectric layer and a patterned metal hard mask layer are sequentially formed thereon. Thereafter, a portion of the dielectric layer is removed to form a damascene opening exposing the patterned conductive layer. Afterwards, the dielectric layer is heated to above 200° C. Thereafter, a plasma treatment process is performed on the damascene opening, wherein the gases used to generate the plasma include hydrogen gas and inert gas. Afterwards, a conductive layer is formed in the damascene opening to fill therein.
摘要:
A cleaning solution is provided. The cleaning solution includes a fluorine containing compound, an inorganic acid, a chelating agent containing a carboxylic group and water for balance. The content of the fluorine containing compound is 0.01-0.5 wt % of. The content of the inorganic acid is 1-5 wt %.
摘要:
A cleaning solution is provided. The cleaning solution includes a fluorine containing compound, an inorganic acid, a chelating agent containing a carboxylic group and water for balance. The content of the fluorine containing compound is 0.01-0.5 wt % of. The content of the inorganic acid is 1-5 wt %.
摘要:
A semiconductor substrate is first provided. The semiconductor substrate includes a material layer and a patterned photoresist layer disposed on the material layer. Subsequently, a contact etching process is performed on the material layer by utilizing the patterned photoresist layer as an etching mask so to form an etched hole in the material layer. Thereafter, a solvent cleaning process is carried out on the semiconductor substrate by utilizing a cleaning solvent. Next, a water cleaning process is performed on the semiconductor substrate by utilizing deionized water. The temperature of the deionized water is in a range from 30° C. to 99° C.
摘要:
A cleaning solution is provided. The cleaning solution includes (a) 0.01-0.1 wt % of hydrofluoric acid (HF); (b) 1-5 wt % of a strong acid, wherein the strong acid is an inorganic acid; (c) 0.05-0.5 wt % of ammonium fluoride (NH4F); (d) a chelating agent containing a carboxylic group; (e) triethanolamine (TEA); (f) ethylenediaminetetraacetic acid (EDTA); and (g) water for balance.
摘要:
A cleaning solution is provided. The cleaning solution includes (a) 0.01-0.1 wt % of hydrofluoric acid (HF); (b) 1-5 wt % of a strong acid, wherein the strong acid is an inorganic acid; (c) 0.05-0.5 wt % of ammonium fluoride (NH4F); (d) a chelating agent containing a carboxylic group; (e) triethanolamine (TEA); (f) ethylenediaminetetraacetic acid (EDTA); and (g) water for balance.
摘要:
A semiconductor manufacturing process is provided. First, a substrate is provided, wherein a patterned conductive layer, a dielectric layer and a patterned metal hard mask layer are sequentially formed thereon. Thereafter, a portion of the dielectric layer is removed to form a damascene opening exposing the patterned conductive layer. Afterwards, the dielectric layer is heated to above 200° C. Thereafter, a plasma treatment process is performed on the damascene opening, wherein the gases used to generate the plasma include hydrogen gas and inert gas. Afterwards, a conductive layer is formed in the damascene opening to fill therein.
摘要:
A method of removing a photoresist layer is provided. An ion implantation process has been performed on the photoresist layer to transform a surface of the photoresist layer to a crust and a soft photoresist layer remains within the crust. The method includes performing a first removing step to remove the crust, such that the soft photoresist layer is exposed. Thereafter, a second removing step is performed to remove the soft photoresist layer. The first and the second removing steps are performed in difference chambers, and a temperature for performing the first removing step is lower than that for performing the second removing step and lower than a gasification temperature of a solvent in the soft photoresist layer.
摘要:
A method for forming an opening on a material layer is provided. First, a dielectric layer is formed on the material layer. Then, a metallic hard mask layer and a cap layer are sequentially formed on the dielectric layer. Thereafter, a patterned photoresist layer is formed on the cap layer. The patterned photoresist layer exposes a portion of the surface of the cap layer. After that, a first etching operation is carried out using the patterned photoresist layer as a mask to remove a portion of the cap layer and the metallic hard mask layer until the surface of the dielectric layer is exposed. Then, the photoresist layer is removed. A second etching operation is carried out using the cap layer and the metallic hard mask layer as a mask to remove a portion of the dielectric layer and form an opening.