摘要:
An organic electroluminescent device such as a light-emitting diode is disclosed, in which the emission layer comprises a single emitting material at different aggregate state to obtain constant chromaticity white emission. Correspondingly, a novel configuration has been developed to get white emission and color change in the organic EL devices.
摘要:
Compounds of formula [I] wherein each R1 to R8 is independently selected from the group consisting of halogen atoms, cyano, isocyano, mercapto, amino, carbonyl, carboxy, sulfone, nitro and hydroxy groups, and optionally substituted alkyl, alkenyl, alkynyl, haloalkyl, hydroxyalkyl, aryl, alkoxy, aryloxy, alkylamino, arylamino, alkylarylamino, amide, alkylthio, arylthio, alkoxy carbonyl, siloxy, cyclic hydrocarbon or heterocyclic groups; each x is independently zero, one, two or three; each y is independently zero or one; and each z is independently zero, one, two or three are useful in organic electroluminescence devices. Such compounds are disclosed herein, as well as organic electroluminescence devices using the compounds in the emissive layer.
摘要:
An electroluminescent element has an anode, a cathode, and an organic layer structure between the two electrodes. The layer structure has a luminescent zone containing 1,9-perinaphtylene-10-1′-naphthylanthracene or derivatives as dopant. The luminescent material utilized as dopant has the following structure called pNNA or pNNA derivatives: Wherein: R1, R2, R3, R4 are individual substituents or a group of substituents, and they may be identical or different. Each substituent is individually selected from the following groups consisting of: H, alkyl (—R), halogen (—X), aryl (—Ar), alkenyl (RCH═CH—), allyl(CH2═CHCH2—), cyano (NC—), isocyano (CN—), amino (H2N—), tertiary amino (R2N—or Ar1Ar2N—), amide (RCONR—), nitro (N2O—), acyl (RCO—), carboxyl (—CO2H), alkoxyl (RO—), alkylsulfonyl (RSO2—), hydroxy (HO—) and single or fused aromatic heterocyclic rings.
摘要:
Disclosed herein are several organic compounds having electron-transporting and/or hole-blocking performance and their preparation method and use and the OLEDs comprising the organic compound. The organic compounds exhibit high ionization potential (IP), electron affinity (Ea), glass transition temperature (Tg) and high electron mobility, and are a kind of good electron-transporting material with good hole-blocking ability. The devices comprising these compounds as one of the emitting layer, electron-transporting layer (ETL) and hole-blocking layer (HBL) show improved efficiency and better color purity.
摘要:
There are disclosed rare-earth metal containing electron-injecting electrodes which are particularly effective for use with organic LED devices used in electroluminescent structures and which may in particular be formed as transparent electrodes for use in transparent or surface emitting OLEDs.
摘要:
Disclosed herein are several organic compounds having electron-transporting and/or hole-blocking performance and their preparation method and use and the OLEDs comprising the organic compound. The organic compounds exhibit high ionization potential (IP), electron affinity (Ea), glass transition temperature (Tg) and high electron mobility, and are a kind of good electron-transporting material with good hole-blocking ability. The devices comprising these compounds as one of the emitting layer, electron-transporting layer (ETL) and hole-blocking layer (HBL) show improved efficiency and better color purity.
摘要:
Silicon nanowires and silicon nanoparticle chains are formed by the activation of silicon monoxide in the vapor phase. The silicon monoxide source may be solid or gaseous, and the activation may be by thermal excitation, laser ablation, plasma or magnetron sputtering. The present invention produces large amounts of silicon nanowires without requiring the use of any catalysts that may cause contamination.
摘要:
There are disclosed rare-earth metal containing electron-injecting electrodes which are particularly effective for use with organic LED devices used in electroluminescent structures and which may in particular be formed as transparent electrodes for use in transparent or surface emitting OLEDs.
摘要:
A compound of formula [I]: X—R[I] wherein X represents the group: and R is either (i) represented by the formula [II] wherein n is 1 or 2, and the or each R7 group is independently selected from the group consisting of hydrogen and halogen atoms, cyano, nitro, mercapto, carbonyl and sulfone groups, and optionally substituted alkyl, haloalkyl, hydroxyalkyl, aryl, alkoxy, aryloxy, alkylamino, arylamino, alkylthio, arylthio, ester, siloxy, cyclic hydrocarbon and heterocyclic groups; or (ii) is selected from the group consisting of optionally substituted alkyl, hydroxyalkyl, aryl, cyclic hydrocarbon and heterocyclic groups; wherein in each case R1–R6 are each independently selected from the group consisting of hydrogen and halogen atoms, cyano, nitro, mercapto, carbonyl and sulfone groups, and optionally substituted alkyl, haloalkyl, hydroxyalkyl, aryl, alkoxy, aryloxy, alkylamino, arylamino, alkylthio, arylthio, ester, siloxy, cyclic hydrocarbon and heterocyclic groups. The compounds are useful as hole-transporting materials in electroluminescence devices.
摘要:
An organic light-emitting diode is described in which the anode comprises midfrequency magnetron sputtered aluminum-doped zinc oxide to increase the device stability and to decrease the material cost. Due the novel deposition technique, ZnO:Al film with ITO-like electrical conductivity can be deposited and improved device performance, especially the long-term stability can be obtained which are attributed to the modification of the ZnO:Al conductivity and surface chemistry.