Abstract:
Mass spectrometry apparatus for analyzing the composition of moving microscopic particles includes a capacitor having a front electrode upon which the particles impinge, a back electrode, and a solid dielectric sandwiched between the front and back electrodes. In one embodiment, the electrodes and dielectric are arcuately shaped as concentric peripheral segments of different spheres having a common center and different radii. The front electrode and dielectric together have a thickness such that an impinging particle can penetrate them. The front electrode is negatively biased relative to the back electrode so that an impinging particle causes the front and back electrodes to become electrically connected to form a discharge spark between the electrodes. The discharge spark causes ejection from the front electrode of positive ions of elements in the impinging particle. An electric field is formed in front of the front electrode by a grid that is pervious to the particles and ions. The grid is negatively biased relative to the front electrode to draw the ejected positive ions away from the front electrode, so they impinge on a positive ion detector target. The arrival time of different ions is measured to complete the analysis. In a second embodiment, the capacitor has planar, parallel electrodes, in which case the ejected positive ions are deflected downstream of a planar grid by a pair of spaced, arcuate capacitor plates having a region between them through which the ejected ions travel.
Abstract:
An apparatus for measuring the moisture content of a soil sample at selected depths is disclosed. Light is conducted from a source via a fiber optical cable to a soil probe which is inserted at selected depths into a bore hole formed in the soil sample. Light from the source and reflected light from the soil sample is conducted via fiber optic cables to a reflectometer, which determines reflection factors of the soil sample at three selected infrared wavelengths of a water absorption band. Means are provided to compute the moisture content of the sample at the selected depths from the measured reflectance factors.
Abstract:
A method of daytime imaging in a range of thermal wavelengths (3-5 microns) which includes specularly reflected solar radiation. Mathematical processing serves to separate the thermal and specular reflection components based on Fresnel's equations which relate the thermal component to three variables: the total radiation intensity; the degree of polarization of the total radiation; and the degree of polarization of the specular reflection component. The first two of these variables may be measured by means of a photometer which is scanned across a target area, and a suitably oriented polarizing filter. The third variable can be calculated as a function of two other quantities: the angle of incidence of sunlight on the target object and the index of refraction of the target object. The first of these two quantities is calculable from time and geographical position data, while the second can be estimated with sufficient accuracy. Each calculation produces a single pixel, and a succession of such pixels is used to build up an image upon a CRT raster which is synchronized with the photometer scan.
Abstract:
A method of determining vegetation height and water content of vegetation from the intensity and state of elliptical polarization of a reflected train of microwaves. The method comprises the steps of reflecting a circularly polarized train of microwaves from vegetation at a predetermined angle of incidence, detecting the reflected train of microwaves, determining the ratio of the intensities of the electric field vector components, measuring the phase difference of the components, and computing the refractive index and thickness of the layer of vegetation from a formula, wherein the refractive index is given essentially by the water content of the vegetation.