摘要:
A wireless extension of the IEEE 1394 bus where two clusters of 1394 devices are linked by a wireless bridge. The device clusters communicate without being bridge-aware. The wireless bridge provides for a bus reset isolation. The wireless extension including a buffer memory for storing self-identification packets in the 1394 interfaces of both boxes of the wireless bridge. With these buffer memories the self-identification packets of the bus stations in the other cluster can be collected and they can be read out during the self-configuration phase of the network after a bus reset when the bus grant is assigned to the box of the wireless bridge that is also connected to the bus where the bus reset has occurred. The physical layer block of the 1394 interface transmits artificial self-identification packets for all bus stations of the other cluster.
摘要:
The invention deals with a physical layer circuit for the IEEE1394 bus. Considered is a scenario where two clusters of 1394 devices are linked to each other by means of a wireless bridge. The devices of one cluster shall communicate with devices of the other cluster without being bridge aware. Under this scenario there are two different types of 1394 devices existing in each cluster. One device is a bridge portal and will have the bridge functionality. All the other 1394 devices in the cluster will not have the bridge functionality. As the device having the bridge functionality needs to have a specific buffer memory for buffering node-ID packets, usually there are two different types of physical layer circuits required for the different types of 1394 devices. The invention deals with the problem of how it can be realized to use in both different types of 1394 devices the same type of physical layer circuit. The invention solves the problem by means of configuration means in the physical layer circuit. These configuration means enable either to configure the physical layer circuit as a bridge portal physical layer circuit supporting the bridge functionality by buffering said node-ID packets in said buffer memory or else configuring the physical layer circuit as a standard physical layer circuit that disables the buffering of said node-ID packets. The new type of physical layer circuit is pin compatible with a standard physical layer circuit.
摘要:
The invention deals with a physical layer circuit for the IEEE1394 bus. Considered is a scenario where two clusters of 1394 devices are linked to each other by means of a wireless bridge. The devices of one cluster shall communicate with devices of the other cluster without being bridge aware. Under this scenario there are two different types of 1394 devices existing in each cluster. One device is a bridge portal and will have the bridge functionality. All the other 1394 devices in the cluster will not have the bridge functionality. As the device having the bridge functionality needs to have a specific buffer memory for buffering node-ID packets, usually there are two different types of physical layer circuits required for the different types of 1394 devices. The invention deals with the problem of how it can be realized to use in both different types of 1394 devices the same type of physical layer circuit. The invention solves the problem by means of configuration means in the physical layer circuit. These configuration means enable either to configure the physical layer circuit as a bridge portal physical layer circuit supporting the bridge functionality by buffering said node-ID packets in said buffer memory or else configuring the physical layer circuit as a standard physical layer circuit that disables the buffering of said node-ID packets. The new type of physical layer circuit is pin compatible with a standard physical layer circuit.
摘要:
The format of the transmission of isochronous data packets via the IEEE 1394 bus is defined in the IEC 61883 Standard. A bus packet used to transmit the data has a header at the beginning, which header describes the format of the bus packet. This is then followed by an isochronous data format header, which defines the data format of the useful data in the useful packet. The invention is concerned with the problem of compiling a bus packet for transmission via the 1394 bus. In the case of the invention, this is done in such a way that when the isochronous data transmission is set up, the isochronous data format header prescribed by the application is written both to a special register that is provided and to the buffer memory for the bus packets and the useful data are attached thereto. As a result, it is then possible that a data transmitting section has to take the data to be transmitted, including the isochronous data format header, only from the buffer memory. A multiplex operation joining together the data and the isochronous data format header need not then be effected for the transmission of the data.
摘要:
According to the IEEE1394 bus protocol, priority is given to isochronous data packets. Data transfer is done in transfer cycles under the control of a cycle master. It depends on the allocated bandwidth for isochronous data how much transport capacity is available in a transfer cycle. To managed the mixed data transfer in one cycle it is specified that the bus nodes not having isochronous data to transfer need to wait with their transmission requests until the end of the isochronous data transfers in the cycle indicated with a sub-action gap. The invention aims to improve the efficiency of data transport for the case that none of the bus nodes need to transfer isochronous data. The data link layer devices according to the invention includes means for checking whether isochronous data is to be transferred and if not they switch over to a no cycle master state, in which the local cycle synchronization events are ignored. The nodes need not wait for a sub-action gap after a local cycle event before drawing asynchronous transmission requests.
摘要:
According to the IEEE1394 bus protocol, priority is given to isochronous data packets. Data transfer is done in transfer cycles under the control of a cycle master. It depends on the allocated bandwidth for isochronous data how much transport capacity is available in a transfer cycle. To managed the mixed data transfer in one cycle it is specified that the bus nodes not having isochronous data to transfer need to wait with their transmission requests until the end of the isochronous data transfers in the cycle indicated with a sub-action gap. The invention aims to improve the efficiency of data transport for the case that none of the bus nodes need to transfer isochronous data. The data link layer devices according to the invention includes means for checking whether isochronous data is to be transferred and if not they switch over to a no cycle master state, in which the local cycle synchronization events are ignored. The nodes need not wait for a sub-action gap after a local cycle event before drawing asynchronous transmission requests.
摘要:
The invention relates to a way of implementing the so-called “late” check according to IEC 61883 in a link layer IC for the IEEE 1394 Serial Bus in a way which is favourable in terms of expenditure. According to the invention, a specific time model is used which, during the checking of the up-to-dateness of a data packet by comparison with the current bus time, also substantially simplifies the necessary comparison operations by virtue of the fact that it is possible to represent only sections of the time axis by means of a data word with limited bit length.
摘要:
The IEEE1394 bus communication protocol has three layers: physical layer, link layer, and transaction layer. A link layer IC implements the interface to an external application and prepares data for sending on the bus, or interprets incoming data packets from the IEEE1394 bus. A physical layer IC implements the direct electrical connection to the bus and controls many functions including arbitration for sending data on the bus. According to the invention the capacity of the on-chip memory becomes assigned in a flexible way in order to be able to meet the requirements for any specific service. Further, the on-chip memory is prevented from storing data packets containing transmission errors by CRC checking on the fly header data and other data. This is performed for asynchronous data packets as well as isochronous data packets, and allows to have a minimum on-chip memory capacity only.
摘要:
A method for digitally transmitting/recording component-coded color television signals includes the step of, upon transition from a first picture aspect ratio to a second picture aspect ratio obtaining at least part of an additionally required transmitting/recording capacity for coding an additionally formed area of pictures with the second picture aspect ratio by vertical sub scanning of one or more chrominance components.
摘要:
The IEEE1394 bus communication protocol has three layers: physical layer, link layer, and transaction layer. A link layer IC implements the interface to an external application and prepares data for sending on the bus, or interprets incoming data packets from the IEEE1394 bus. A physical layer IC implements the direct electrical connection to the bus and controls many functions including arbitration for sending data on the bus. A problem exists due to the fact that the header data of the IEEE1394 asynchronous data packets consists of 32 bit words which have to be interpreted as 32 bit words in the connected application data processing unit (30). The IEEE1394 bus interface unit (20) is defined to be of big endian type. In a little endian type application data processor (30) the data word order can only be correctly interpreted after a byte order change. According to the invention the byte order change is performed in the data link layer unit (21) automatically with hardware circuitry for asynchronous data packets.