摘要:
Embodiments of a method and apparatus for removing metallic nanotubes without transferring CNTs from one substrate to another substrate provide two methods of transferring a thin layer of crystalline ST-cut quartz wafer to the surface of a carrier silicon wafer for subsequent CNT growth, without resorting to CNT transfer. In other words, embodiments of a method and apparatus allow CNTs to be grown on the same substrate that metallic nanotube removal is performed, therefore eliminating the costly and messy step of transferring CNTs from one substrate to another. This is achieved through a residual thin layer of crystalline ST-cut quartz layer on a silicon wafer. The ST-cut quartz wafer promotes aligned growth of CNTs, while the underlying silicon wafer allows backgate burnout.
摘要:
First and second semiconductor wafers are bonded together, with at least one of the wafers having a first layer of silicon, an intermediate oxide layer and a second layer of silicon. The first silicon layer is initially mechanically reduced by around 80% to 90% of its thickness. The remaining silicon layer is further reduced by a plasma etch which may leave an uneven thickness. With appropriate masking the uneven thickness is made even by a second plasma etch. Remaining silicon is removed by a dry etch with XeF2 or BrF3 to expose the intermediate oxide layer. Prior to bonding the semiconductor wafers may be provided with various semiconductor devices to which electrical connections are made through conducting vias formed through the exposed intermediate oxide layer.
摘要:
The disclosed invention relates to achieving micromachined piezoelectrically-actuated diaphragms. The piezoelectric diaphragm includes a central, inactive electrode free region and an annular shaped interdigitated electrode adjacent to the outer periphery of the central region. The diaphragm also may have an inactive annular, electrode free region and an active central, interdigitated electrode region. The diaphragms may be used in, such as, miniature pumps. The pumps may include a plurality of chambers to generate peristaltic pumping of fluids.