摘要:
A thermal priority fuel cell power plant includes a cell stack assembly for generating an electrical power output. The cell stack assembly includes an anode, a cathode, and a waste heat recovery loop. The waste heat recovery loop is configured to remove waste heat generated from the electrochemical reaction and is thermally coupled to the cell stack assembly for managing the waste heat of the cell stack assembly and for supplying thermal power to a thermal load demand. The waste heat recovery loop includes a heat exchanger in heat exchange relationship with the coolant outlet conduit and the thermal load demand. A controller is operatively associated with the cell stack assembly and the waste heat recovery loop. The controller controls the operation of the cell stack assembly by adjusting a fuel cell power plant parameter responsive to the thermal load demand.
摘要:
A thermal priority fuel cell power plant includes a cell stack assembly for generating an electrical power output. The cell stack assembly includes an anode, a cathode, and a waste heat recovery loop. The anode is configured to receive a fuel, the cathode is configured to receive an oxidizer, and the cell stack assembly is configured to generate the electrical power output by electrochemically reacting the anode fuel and the cathode oxidizer in the presence of a catalyst. The waste heat recovery loop includes a coolant inlet conduit and a coolant outlet conduit, and is configured to remove waste heat generated from the electrochemical reaction. A waste heat recovery loop is thermally coupled to the cell stack assembly for managing the waste heat of the cell stack assembly and for supplying thermal power to a thermal load demand. The waste heat recovery loop includes a heat exchanger in heat exchange relationship with the coolant outlet conduit and the thermal load demand. A controller is operatively associated with the cell stack assembly and the waste heat recovery loop. The controller controls the operation of the cell stack assembly by adjusting a fuel cell power plant parameter responsive to the thermal load demand. In one aspect, the fuel cell power plant parameter is reactant utilization. In another aspect, the fuel cell power plant parameter is a temperature for a thermal management system accumulator.
摘要:
An example fuel cell arrangement includes a fuel cell stack configured to receive a supply fluid and to provide an exhaust fluid that has more thermal energy than the supply fluid. The arrangement also includes an ejector and a heat exchanger. The ejector is configured to direct at least some of the exhaust fluid into the supply fluid. The heat exchanger is configured to increase thermal energy in the supply fluid using at least some of the exhaust fluid that was not directed into the supply fluid.
摘要:
A fluidized contaminant separator and water-control loop (10) decontaminates a fuel reactant stream of a fuel cell (12). Water passes over surfaces of an ammonia dissolving media (61) within a fluidized bed (62) while the fuel reactant stream simultaneously passes over the surfaces to dissolve contaminants from the fuel reactant stream into a separated contaminant and water stream. A fuel-control heat exchanger (57) upstream from the scrubber (58) removes heat from the fuel stream. A water-control loop (78) directs flow of the separated contaminants and water stream from an accumulator (68) through an ion exchange bed (88) which removes contaminants from the stream. Decontaminated water is directed back into the scrubber (58) to flow through the fluidized bed (62). Separating contaminants from the fuel reactant stream and then isolating and concentrating the separated contaminants within the ion exchange material (88) minimizes costs and maintenance requirements.
摘要:
A powerplant is provided that includes a first gas turbine engine, a second gas turbine engine, a second engine bypass flowpath and a flow control system. The first gas turbine engine includes a first core flowpath fluidly coupled with a first inlet and a first exhaust. The first core flowpath extends sequentially through a first compressor section, a first combustor section and a first turbine section. The second gas turbine engine a second core flowpath fluidly coupled with a second inlet and a second exhaust. The second core flowpath extends sequentially through a second compressor section, a second combustor section and a second turbine section. The flow control system fluidly couples the first inlet and the first exhaust to the second core flowpath during a first mode. The flow control system fluidly couples the first inlet and the first exhaust to the second engine bypass flowpath during a second mode.
摘要:
A system and method for operating fuel cell power plant 10 includes enclosing fuel bearing components, such as fuel cell stack 28 and reformer 24, into a fuel compartment 12 separate from motorized components in a motor compartment 14, and consuming leaked fuel in the fuel compartment 12 using a fuel bearing component such as cell stack 28 and/or burner 26, thereby reducing fuel emissions from the plant.
摘要:
A fluidized contaminant separator and water-control loop (10) decontaminates a fuel reactant stream of a fuel cell (12). Water passes over surfaces of an ammonia dissolving media (61) within a fluidized bed (62) while the fuel reactant stream simultaneously passes over the surfaces to dissolve contaminants from the fuel reactant stream into a separated contaminant and water stream. A fuel-control heat exchanger (57) upstream from the scrubber (58) removes heat from the fuel stream. A water-control loop (78) directs flow of the separated contaminants and water stream from an accumulator (68) through an ion exchange bed (88) which removes contaminants from the stream. Decontaminated water is directed back into the scrubber (58) to flow through the fluidized bed (62). Separating contaminants from the fuel reactant stream and then isolating and concentrating the separated contaminants within the ion exchange material (88) minimizes costs and maintenance requirements.
摘要:
An example fuel cell arrangement includes a fuel cell stack configured to receive a supply fluid and to provide an exhaust fluid that has more thermal energy than the supply fluid. The arrangement also includes an ejector and a heat exchanger. The ejector is configured to direct at least some of the exhaust fluid into the supply fluid. The heat exchanger is configured to increase thermal energy in the supply fluid using at least some of the exhaust fluid that was not directed into the supply fluid.
摘要:
A system and method for operating fuel cell power plant 10 includes enclosing fuel bearing components, such as fuel cell stack 28 and reformer 24, into a fuel compartment 12 separate from motorized components in a motor compartment 14, and consuming leaked fuel in the fuel compartment 12 using a fuel bearing component such as cell stack 28 and/or burner 26, thereby reducing fuel emissions from the plant.
摘要:
Support structure (12) includes a recess (32) which accepts short plate (20) of brush seal (10). The recess will not accept long plate (18) of the seal. Retaining ring groove (28) accepts the retaining ring (26) only if the seal is installed in the proper direction. Reverse installation is precluded without special machining of the brush seal.