摘要:
Method for controlling lost circulation in a subterranean well using oil-dispersible lost-circulation materials which comprise fibers that are coated (or sized) with a lipophilic coupling agent, a lipophilic film-forming polymer or both. The fibers are preferably between about 6 mm and about 25 mm long, and between about 10 μm and about 200 μm in diameter. The fibers may be added to carrier fluids comprising oil-base fluids, synthetic-base fluids, invert-emulsion-base fluids and combinations thereof. The preferred fiber concentration in the carrier fluid is between about 0.55 g/L and about 28.5 g/L. The carrier fluid may be a drilling fluid, a spacer fluid or a lost-circulation pill.
摘要:
Method for controlling lost circulation in a subterranean well using oil-dispersible lost-circulation materials which comprise fibers that are coated (or sized) with a lipophilic coupling agent, a lipophilic film-forming polymer or both. The fibers are preferably between about 6 mm and about 25 mm long, and between about 10 μm and about 200 μm in diameter. The fibers may be added to carrier fluids comprising oil-base fluids, synthetic-base fluids, invert-emulsion-base fluids and combinations thereof. The preferred fiber concentration in the carrier fluid is between about 0.55 g/L and about 28.5 g/L. The carrier fluid may be a drilling fluid, a spacer fluid or a lost-circulation pill.
摘要:
The following describes a novel and alternative mechanism in regards to releasing reactive chemicals. Namely, utilizing shells containing multiple emulsions that can be blended with the base fluids, and then react with said base fluid upon exposure to a trigger e.g. high shear and/or elongation flow, therefore plugging even large fractures. Such gelling lost circulation material allows to obtain a reliable carrier and fast reaction when triggered.
摘要:
The following describes a novel and alternative mechanism in regards to releasing reactive chemicals. Namely, utilizing shells containing multiple emulsions that can be blended with the base fluids, and then react with said base fluid upon exposure to a trigger e.g. high shear and/or elongation flow, therefore plugging even large fractures. Such gelling lost circulation material allows to obtain a reliable carrier and fast reaction when triggered.
摘要:
An encapsulated thixotropy agent may be added to aqueous well service fluids. Such fluids include drilling fluids, cement slurries and polymer pills. The well service fluid may be subjected to shearing action downhole, causing the thixotropy agent to be released and imparting thixotropy to the fluid. The thixotropy agent comprises a dry suspension of synthetic layered silicates.
摘要:
Mixtures of fibers and solid particles are effective for curing fluid losses and lost circulation in a subterranean well. Stiff fibers are more effective than flexible ones; however, mixtures of stiff and flexible fibers have a synergistic effect. The quantity and particle-size distribution of the solids are optimized according to the stiffness, dimensions and concentrations of fibers.
摘要:
Mixtures of fibers and solid particles are effective for curing fluid losses and lost circulation in a subterranean well. Stiff fibers are more effective than flexible ones; however, mixtures of stiff and flexible fibers have a synergistic effect. The quantity and particle-size distribution of the solids are optimized according to the stiffness, dimensions and concentrations of fibers.
摘要:
Well treatment compositions comprise at least one surfactant, and an ionic liquid, a deep eutectic solvent or both. When added to spacer fluids, chemical washes or both, the compositions promote the removal of non-aqueous drilling fluids from casing surfaces. Additionally, the treated casing surfaces are water wet, thereby promoting optimal bonding to cement.
摘要:
A process for hydraulic fracturing of a subterranean reservoir formation penetrated by a wellbore includes pumping a fracturing fluid or other aqueous fluid from the surface via the wellbore and into the reservoir. This fluid is an aqueous suspension of particles which each comprise an oilfield chemical distributed within an encapsulating matrix of water-insoluble carrier material. The encapsulating matrix is chosen so as to provide a delayed release of the oilfield chemical from the particles into surrounding fluid, such that oilfield chemical is liberated from the particles after they have entered the fracture. The encapsulating matrix may be a polymer which is at least partially amorphous, with a glass transition temperature below the reservoir temperature.
摘要:
A process for hydraulic fracturing of a subterranean reservoir formation penetrated by a wellbore includes pumping a fracturing fluid or other aqueous fluid which is an aqueous suspension of particles which each comprise an oilfield chemical distributed within an encapsulating matrix of water-insoluble carrier_material from the surface via the wellbore and into the reservoir. The encapsulating matrix is chosen so as to provide a delayed release of the oilfield chemical from the particles into surrounding fluid, such that oilfield chemical is liberated from the particles after they have entered the fracture. The encapsulating matrix may be a polymer which is at least partially amorphous, with a glass transition temperature below the reservoir temperature.