摘要:
A multiple use core logic chip set is provided in a computer system that may be configured either as a bridge between an accelerated graphics port ("AGP") bus and host and memory buses, as a bridge between an additional registered peripheral component interconnect ("RegPCI") bus and the host and memory buses, or as a bridge between a primary PCI bus and an additional RegPCI bus. The function of the multiple use chip set is determined at the time of manufacture of the computer system or in the field whether an AGP bus bridge or an additional registered PCI bus bridge is to be implemented. The multiple use core logic chip set has an arbiter having Request ("REQ") and Grant ("GNT") signal lines for each PCI device utilized on the additional registered PCI bus. Selection of the type of bus bridge (AGP or RegPCI) in the multiple use core logic chip set may be made by a hardware signal input, or by software during computer system configuration or power on self test ("POST"). Software configuration may also be determined upon detection of either an AGP or a RegPCI device connected to the common AGP/RegPCI bus.
摘要:
A multiple use core logic chip set is provided in a computer system that may be configured either as a bridge between an accelerated graphics port ("AGP") bus and host and memory buses, as a bridge between a 64 bit additional peripheral component interconnect ("PCI") bus and the host and memory buses, or as a bridge between a primary PCI bus and an additional PCI bus. The function of the multiple use chip set is determined at the time of manufacture of the computer system or in the field whether an AGP bus bridge or an additional 64 bit PCI bus bridge is to be implemented. The multiple use core logic chip set has an arbiter having Request ("REQ") and Grant ("GNT") signal lines for each PCI device utilized on the additional 64 bit PCI bus. Selection of the type of bus bridge (AGP or PCI) in the multiple use core logic chip set may be made by a hardware signal input, or by software during computer system configuration or power on self test ("POST"). Software configuration may also be determined upon detection of a PCI device connected to the common bus.
摘要:
A computer system having at least one central processing unit, system memory, and a core logic capable of accepting an AGP bus is provided with an AGP to AGP bridge connected to the standard AGP bus. The AGP to AGP bridge can accommodate two or more AGP-compatible devices that can be accessed through the standard AGP bus via the AGP to AGP bridge. A PCI to memory bridge is also provided within the AGP to AGP bridge so that PCI devices may be connected to the AGP to AGP bridge. The AGP to AGP bridge is fitted with an overall flow control logic that controls the transfer of data to or from the various AGP devices and the standard AGP bus that is connected to the core logic of the computer system. The AGP to AGP Bridge can utilize a standard 32-bit AGP bus as well as (two) dual 32-bit buses to enhance bandwidth. In an alternate embodiment of the invention, the dual 32-bit buses can be combined to form a single 64-bit bus to increase the available bandwidth. Alternate embodiments of the AGP to AGP Bridge can accommodate the single 64-bit AGP bus for increased performance. Another alternate embodiment can accommodate peer-to-peer transfer of data between AGP busses on the bridge.
摘要:
A core logic chip set is provided in a computer system that may be configured either as a bridge between an accelerated graphics port ("AGP") bus and host and memory buses, as a bridge between an additional peripheral component interconnect ("PCI") bus and the host and memory buses, or as a bridge between a primary PCI bus and an additional PCI bus. A common bus having provisions for the PCI and AGP interface signals is connected to the core logic chip set and either an AGP or PCI device(s). The core logic chip set also has an AGP/PCI arbiter having additional Request ("REQ") and Grant ("GNT") signal lines so that more than one PCI device may be utilized on the additional PCI bus. Selection of the type of bus bridge (AGP or PCI) in the core logic chip set may be made by a hardware signal input, software during computer system configuration or power on self test ("POST"). Software configuration may also be determined upon detection of either an AGP or PCI device connected to the common bus.
摘要:
A computer system having at least one central processing unit, system memory, and a core logic capable of accepting an AGP bus is provided with an AGP to AGP bridge connected to the standard AGP bus. The AGP to AGP bridge can accommodate two or more AGP-compatible devices that can be accessed through the standard AGP bus via the AGP to AGP bridge. A PCI to memory bridge is also provided within the AGP to AGP bridge so that PCI devices may be connected to the AGP to AGP bridge. The AGP to AGP bridge is fitted with an overall flow control logic that controls the transfer of data to or from the various AGP devices and the standard AGP bus that is connected to the core logic of the computer system. The AGP to AGP Bridge can utilize a standard 32-bit AGP bus as well as (two) dual 32-bit buses to enhance bandwidth. In an alternate embodiment of the invention, the dual 32-bit buses can be combined to form a single 64-bit bus to increase the available bandwidth. Alternate embodiments of the AGP to AGP Bridge can accommodate the single 64-bit AGP bus for increased performance. Another alternate embodiment can accommodate peer-to-peer transfer of data between AGP busses on the bridge.
摘要:
A multiple use core logic chip set is provided in a computer system that may be configured either as a bridge between an accelerated graphics port ("AGP") bus and host and memory buses, as a bridge between a 32 bit additional peripheral component interconnect ("PCI") bus and the host and memory buses, or as a bridge between a primary PCI bus and an additional PCI bus. The function of the multiple use chip set is determined at the time of manufacture of the computer system or in the field whether an AGP bus bridge or an additional 32 bit PCI bus bridge is to be implemented. The multiple use core logic chip set has an arbiter having Request ("REQ") and Grant ("GNT") signal lines for each PCI device utilized on the additional 32 bit PCI bus. Selection of the type of bus bridge (AGP or PCI) in the multiple use core logic chip set may be made by a hardware signal input, software during computer system configuration or power on self test ("POST"). Software configuration may also be determined upon detection of a PCI device connected to the common bus.
摘要:
A core logic chip set is provided in a computer system to provide a bridge between host and memory buses and an accelerated graphics port ("AGP") bus adapted for operation of two AGP devices, or one AGP device and one peripheral component interconnect ("PCI") device. A common AGP bus having provisions for the PCI and AGP interface signals is connected to the core logic chip set and the AGP and/or PCI device(s). The core logic chip set has an AGP/PCI arbiter having Request ("REQ") and Grant ("GNT") signal lines for each AGP and/or PCI device connected to the AGP bus. Another embodiment has a plurality of AGP buses for a plurality of AGP devices. This allows concurrent operation for AGP devices connected to different AGP buses. Two of the AGP buses may be combined to connect to one 64 bit PCI device.