Abstract:
In one embodiment, a computer system, comprises at least one host node, at least one input/output node coupled to the host node, at least one multi-function device coupled to the input/output node via a switch, and a middle manager processor comprising logic to block an enumeration process in a host node for the multi-function devices behind the switch hierarchy, initiate an enumeration process for the multi-function devices in a manager processor separate from the host node, store a routing table for the switch hierarchy in a memory module coupled to the manager processor, and allocate, in the manager processor, endpoint device resources to the host node.
Abstract:
Methods, devices, and systems for multiple host management are provided. An example of a method for multiple host management includes a multiple host management device managing a plurality of host instances. The multiple host management device can provide each of the plurality of host instances with a plurality of input/output (I/O) functionalities.
Abstract:
The present disclosure describes a system and method for multi-host extension of a single-host device comprising a network switch fabric that comprises a rooted hierarchical bus, a first compute node coupled to the network switch fabric, and an input/output (I/O) node coupled to the network switch fabric, the I/O node comprising a network switch fabric interface and a real single-host device. The network switch fabric interface creates a first virtual device mapped to the real single-host device. The first virtual device allows the first compute node to access the real single-host device.
Abstract:
A switching technique allows multiple interconnect bus devices to be connected to a single bus segment, even if the interconnect bus protocol only allows a one of the interconnect devices to be connected at any time. Each of the interconnect devices is connected to the interconnect bus segment with a switch, such that the interconnect device is electrically isolated from the interconnect bus segment when the switch is open. An interconnect sourcing agent connected to the interconnect bus segment controls the switches, closing the switch for one of the interconnect devices when a transaction is destined for that interconnect device, opening all of the other switches so that only one device is connected to the bus at any time.
Abstract:
A distributed direct memory access (DMA) architecture where greater than seven DMA channels are provided and utilized. Alternative methods are disclosed for paging or swapping DMA channels so that more than seven may exist in a computer system, but only seven may be available at a time to remain compatible with conventional DMA controller software. In one method, channels may be assigned identical addresses, with one enabled at one time. In another method, channels are assigned unique addresses but the DMA master addresses only a subset of the total number of channels so that up to seven are available to compatible software at any one time.
Abstract:
A distributed direct memory access (DMA) architecture where DMA controllers are modified to create isolated DMA channels. Each isolated channel includes its own set of uniquely addressable registers which provide functional compatibility with conventional DMA controllers. A DMA master interacts compatibly with the computer system and transparently communicates special cycles to the isolated DMA channels to cause the distributed DMA architecture to appear as the DMA controllers. The DMA master spawns special cycles to the isolated channels for sharing common write data with multiple channels and merging read data into a single DMA controller compatible register. Channel 4 cascading is also handled via tracking registers and special cycles to maintain disable and masking functionality of channel 4 as it effects channels 0-3.
Abstract:
A distributed direct memory access (DMA) architecture where greater than seven DMA channels are provided and utilized. Alternative methods are disclosed for paging or swapping DMA channels so that more than seven may exist in a computer system, but only seven may be available at a time to remain compatible with conventional DMA controller software. In one method, channels may be assigned identical addresses, with one enabled at one time. In another method, channels are assigned unique addresses but the DMA master addresses only a subset of of the total number of channels so that up to seven are available to compatible software at any one time.
Abstract:
Systems and methods of sharing legacy devices in a multi-host environment are disclosed. An exemplary method for sharing legacy devices in a multi-host environment includes receiving device information from a legacy device, the device information identifying a target within a virtual machine. The method also includes encapsulating the device information into a corresponding bus transaction for a network switch fabric. The method also includes routing the bus transaction over the network switch fabric in the virtual machine to a host within the virtual machine.
Abstract:
An apparatus and a method for setting a primary port on a PCI multi-port bridge. More specifically, there is provided a method that comprises detecting a configuration signal at the PCI multi-port bridge and automatically setting the primary port on the PCI multi-port bridge based on the configuration signal. A system for implementing the method is also provided.
Abstract:
A network node within a network includes a first receive buffer, first buffer management, a second receive buffer and second buffer management. The first buffer management performs link level credit based flow control for network packets that the first buffer management places in the first receive buffer. The second buffer management performs end-to-end credit based flow control for network packets that the second buffer management receives from the first receive buffer and processes before placing data in the second receive buffer.