摘要:
Disclosed are a multilayered power inductor, including: a body in which a plurality of magnetic layers formed with inner electrodes are stacked; and a plurality of gap layers, wherein the plurality of gap layers are formed so as not to contact external electrodes formed at both sides of the body, and a gap composition of the multilayered power inductor.In addition, as the gap composition, the exemplary embodiment of present invention can prepare tetravalent or tetravalent dielectric oxide into the paste type and applies the gap layer structure thereto, thereby facilitating the structural design and the thickness control of the gap layer as compared with the case of forming the gap layer in the sheet shape of the related art and improving the DC-bias characteristics by maximally suppressing the diffusion with the body.
摘要:
Disclosed are a multilayered power inductor, including: a body in which a plurality of magnetic layers formed with inner electrodes are stacked; and a plurality of gap layers, wherein the plurality of gap layers are formed so as not to contact external electrodes formed at both sides of the body, and a gap composition of the multilayered power inductor. In addition, as the gap composition, the exemplary embodiment of present invention can prepare tetravalent or tetravalent dielectric oxide into the paste type and applies the gap layer structure thereto, thereby facilitating the structural design and the thickness control of the gap layer as compared with the case of forming the gap layer in the sheet shape of the related art and improving the DC-bias characteristics by maximally suppressing the diffusion with the body.
摘要:
Disclosed herein is a multilayer type power inductor including: a plurality of body layers including internal electrodes and having magnetic material layers stacked therein; and a plurality of gap layers, wherein the gap layer has an asymmetrical structure. In the multilayer type power inductor, portions that are in contact with the body layers have, a non-porous structure, which is a dense structure, and portions that are not in contact with the body layers have a porous structure, such that the gap layer has the asymmetrical structure. Therefore, a magnetic flux propagation path in a coil is dispersed to suppress magnetization at a high current, thereby making it possible to improve a change in inductance (L) value according to the application of current.
摘要:
Disclosed herein is a multilayer type power inductor including: a plurality of body layers including internal electrodes and having magnetic material layers stacked therein; and a plurality of gap layers, wherein the gap layer has an asymmetrical structure. In the multilayer type power inductor, portions that are in contact with the body layers have, a non-porous structure, which is a dense structure, and portions that are not in contact with the body layers have a porous structure, such that the gap layer has the asymmetrical structure. Therefore, a magnetic flux propagation path in a coil is dispersed to suppress magnetization at a high current, thereby making it possible to improve a change in inductance (L) value according to the application of current.
摘要:
Disclosed herein are a multilayer type inductor including a magnetic layer composition including NiZn ferrite, a multilayer type coil component including a magnetic layer prepared therefrom, and a method for manufacturing the same.According to the present invention, a copper electrode can be used as an internal electrode of a multilayer type coil product, by including NiZn ferrite in the magnetic layer. As copper is used for the internal electrode, material costs can be significantly reduced. Furthermore, the present invention can improve the maximum saturation magnetization value against the NiCuZn ferrite by about 10%, due to exclusion of Cu having weak magnetism, and can be more desirably used in a product employing high current.
摘要:
Disclosed herein are a multilayer type inductor including a magnetic layer composition including NiZn ferrite, a multilayer type coil component including a magnetic layer prepared therefrom, and a method for manufacturing the same.According to the present invention, a copper electrode can be used as an internal electrode of a multilayer type coil product, by including NiZn ferrite in the magnetic layer. As copper is used for the internal electrode, material costs can be significantly reduced. Furthermore, the present invention can improve the maximum saturation magnetization value against the NiCuZn ferrite by about 10%, due to exclusion of Cu having weak magnetism, and can be more desirably used in a product employing high current.
摘要:
There are provided a multilayered ceramic electronic component and a method of fabricating the same. The multilayered ceramic electronic component includes: a ceramic main body; external electrodes; and inner conductors forming a structure of a coil within the ceramic main body, wherein a central axis of the coil is in parallel to the direction in which the external electrodes are connected, and the inner conductors include via conductors laminated to be perpendicular to the central axis of the coil and a ratio of the area of one face of the via conductor to the area of the other face of the via conductor ranges from 0.9 to 1.1.
摘要:
Disclosed herein are a ferrite composition for a high frequency bead in that a part of Fe in M-type hexagonal ferrite represented by BaFe12O19 is substituted with at least one metal selected from a group consisting of 2-valence, 3-valence and 4-valence metals, as well as a chip bead material using the same.According to embodiments of the present invention, the dielectric composition is characterized in that a part of Fe as a constituent of M-type hexagonal barium ferrite is substituted by other metals, to thus decrease a sintering temperature to 920° C. or less without using any additive for low temperature sintering. Moreover, because of high SRF properties, the inventive composition is applicable to a multilayer type chip bead used at a high frequency of more than several hundreds MHz and a magnetic antenna.
摘要翻译:本发明公开了一种用于高频珠粒的铁氧体组合物,其中由BaFe 12 O 19表示的M型六方晶系铁氧体中的Fe的一部分被选自2-价,3-价和4-价的至少一种金属所取代 金属,以及使用其的芯片珠材料。 根据本发明的实施方案,电介质组合物的特征在于,作为M型六角钡铁氧体的组成部分的Fe的一部分被其它金属取代,从而将烧结温度降低至920℃以下,而不使用 任何低温烧结添加剂。 此外,由于高SRF性能,本发明的组合物可应用于在高于几百MHz的高频下使用的多层型芯片珠和磁性天线。