摘要:
Provided are a microfluidic device for separating polarizable analytes via dielectrophoresis, the device including: a microchannel including a membrane having nano- to micro-sized pores; at lest two electrodes generating a spaciously non-uniform electric field in the nano- to micro-sized pores when an AC voltage is applied; and a power source applying the AC voltage to the electrodes, and a method of separating polarizable target materials using the device.
摘要:
A dielectrophoresis (DEP) apparatus including a concentration gradient generating unit, a method of separating a target material in a sample solution using the DEP apparatus, and a method of screening the optimum condition for separating a target material are provided.
摘要:
A dielectrophoresis (DEP) apparatus including a concentration gradient generating unit, a method of separating a target material in a sample solution using the DEP apparatus, and a method of screening the optimum condition for separating a target material are provided.
摘要:
A dielectrophoresis (DEP) apparatus including a concentration gradient generating unit, a method of separating a target material in a sample solution using the DEP apparatus, and a method of screening the optimum condition for separating a target material are provided.
摘要:
A dielectrophoresis (DEP) apparatus including a concentration gradient generating unit, a method of separating a target material in a sample solution using the DEP apparatus, and a method of screening the optimum condition for separating a target material are provided.
摘要:
Provided is a microfluidic device including at least one inlet, at least one outlet, and a microchannel connecting the inlet and the outlet. The microfluidic device includes two or more electromagnets disposed on sidewalls of the microchannel and oriented in a predetermined direction with respect to the direction in which the microchannel extends.
摘要:
Provided is a cell lysis method including: preparing a cell sample to be lysed; heating the cell sample; and cooling the cell sample by causing an endothermic reaction near the cell sample. According to the method, cell lysis can be simply and conveniently performed without regard to location and without additional devices since a separate energy source is not required and the apparatus is portable. In particular, when cell lysis is performed in a biochip using a small amount of sample, a greater cell lysis effect can be obtained. In addition, cell lysis efficiency is significantly improved, compared to when only heating is performed.
摘要:
Provided is a method of purifying a target substance using silver nanoparticles. The method includes: mixing a sample containing molecules having a thiol group with the silver nanoparticles to obtain a complex of the molecules having the thiol group with the silver nanoparticles; and isolating and removing the complex from the mixture. By using the purification method, PCR amplifiable DNAs can be rapidly purified, and thus, the method can be very efficiently applied to lab-on-chip (LOC).
摘要:
Provided is a cell lysis method including: preparing a cell sample to be lysed; heating the cell sample; and cooling the cell sample by causing an endothermic reaction near the cell sample. According to the method, cell lysis can be simply and conveniently performed without regard to location and without additional devices since a separate energy source is not required and the apparatus is portable. In particular, when cell lysis is performed in a biochip using a small amount of sample, a greater cell lysis effect can be obtained. In addition, cell lysis efficiency is significantly improved, compared to when only heating is performed.
摘要:
Provided is a method of purifying a target substance using silver nanoparticles. The method includes: mixing a sample containing molecules having a thiol group with the silver nanoparticles to obtain a complex of the molecules having the thiol group with the silver nanoparticles; and isolating and removing the complex from the mixture. By using the purification method, PCR amplifiable DNAs can be rapidly purified, and thus, the method can be very efficiently applied to lab-on-chip (LOC).