Abstract:
In an example, the present invention provides a method for fabricating a laser diode device. The method includes providing a gallium and nitrogen containing substrate member comprising a surface region, a release material overlying the surface region, an n-type gallium and nitrogen containing material; an active region overlying the n-type gallium and nitrogen containing material, a p-type gallium and nitrogen containing material; and a first transparent conductive oxide material overlying the p-type gallium and nitrogen containing material, and an interface region overlying the first transparent conductive oxide material. The method includes bonding the interface region to a handle substrate and subjecting the release material to an energy source to initiate release of the gallium and nitrogen containing substrate member.
Abstract:
In an example, the present invention provides a method for fabricating a laser diode device. The method includes providing a gallium and nitrogen containing substrate member comprising a surface region, a release material overlying the surface region, an n-type gallium and nitrogen containing material; an active region overlying the n-type gallium and nitrogen containing material, a p-type gallium and nitrogen containing material; and a first transparent conductive oxide material overlying the p-type gallium and nitrogen containing material, and an interface region overlying the first transparent conductive oxide material. The method includes bonding the interface region to a handle substrate and subjecting the release material to an energy source to initiate release of the gallium and nitrogen containing substrate member.
Abstract:
A method for fabricating a laser diode device includes providing a gallium and nitrogen containing substrate member having a surface region, forming a patterned dielectric material overlying the surface region to expose a portion of the surface region within a vicinity of an recessed region of the patterned dielectric material and maintaining an upper portion of the patterned dielectric material overlying covered portions of the surface region, and performing a lateral epitaxial growth overlying the exposed portion of the surface region to fill the recessed region and causing a thickness of the lateral epitaxial growth to be formed overlying the upper portion of the patterned dielectric material. The method also includes forming an n-type gallium and nitrogen containing material, forming an active region, and forming a p-type gallium and nitrogen containing material. The method further includes forming a waveguide structure in the p-type gallium and nitrogen containing material.
Abstract:
A method for fabricating a laser diode device includes providing a gallium and nitrogen containing substrate member having a surface region, forming a patterned dielectric material overlying the surface region to expose a portion of the surface region within a vicinity of an recessed region of the patterned dielectric material and maintaining an upper portion of the patterned dielectric material overlying covered portions of the surface region, and performing a lateral epitaxial growth overlying the exposed portion of the surface region to fill the recessed region and causing a thickness of the lateral epitaxial growth to be formed overlying the upper portion of the patterned dielectric material. The method also includes forming an n-type gallium and nitrogen containing material, forming an active region, and forming a p-type gallium and nitrogen containing material. The method further includes forming a waveguide structure in the p-type gallium and nitrogen containing material.