Abstract:
Performing inter-band carrier aggregation based on device capability includes monitoring a dominant type of wireless devices in a wireless sector based on whether or not they are capable of inter-band carrier aggregation, and enabling or disabling inter-band carrier aggregation in the sector based on the dominant type. Enabling/disabling inter-band carrier aggregation can include allowing or preventing usage of usage of a low-frequency carrier as a primary component carrier aggregated with a high-frequency carrier as a secondary component carrier. Carriers using FDD and TDD duplexing modes are included.
Abstract:
Systems and methods are described for scheduling transmissions between an access node and wireless devices. A location may be determined for a plurality of small cells within an access node signal area. Based on the determined locations, a frame structure may be selected for the access node used to communicate with a plurality of wireless devices. Data may then be communicated between the access node and a plurality of wireless devices based on the selected frame structure.
Abstract:
Systems and methods are described for performing handover of a wireless device to a target Access Node (AN) sector. Beam-form capable sectors of one or more target ANs may be selected from a pool of candidate sectors. At least one of the selected sectors may be prioritized (e.g., over the other sectors) based on an open beam-form seat. Handover of the wireless device from a first AN to the prioritized sector may be performed.
Abstract:
Exemplary embodiments described herein include systems, methods, and nodes for selecting a donor for a relay wireless device. Signal levels corresponding to signals received at a relay wireless device from a plurality of access points are determined. Signal information is received from the plurality of access points, wherein the signal information comprises a group identification for each access point. The signal information for the access points may then be compared to a donor criteria. And the access point corresponding to the greatest signal level that also comprises signal information that meets the donor criteria may be selected as the donor for the relay wireless device.
Abstract:
Systems and methods are described for scheduling transmissions from an access node. A location may be determined for a plurality of small cells within an access node signal area. Based on the determined locations, a scheduling algorithm may be selected for the access node, where the scheduling algorithm may comprise one of a low proportional fairness scheduling algorithm, a medium proportional fairness scheduling algorithm, and a high proportional fairness scheduling algorithm. Data may then be transmitted from the access node to a plurality of wireless devices based on the selected scheduling algorithm.