摘要:
A method for bite-setting computer models of teeth on a first jaw and a second jaw includes determining an initial position of the first jaw; and determining an optimal bite based on the initial position of the first jaw.
摘要:
Techniques and systems that provide interactions between a 3D representation of a selected pair of glasses and a fully-textured 3D face model are disclosed. According to one embodiment, an interactive platform is displayed to allow a user to select a pair of glasses and try the selected glasses on a user-provided 3D face model. The interactions provided in the platform include spatial adjustments of the glasses around the face model, various perspective views of the 3D face with the glasses on and other cosmetic alternations to the selected glasses. According to one application, when the user finishes the try-on process, the information about the glasses can be transmitted to a business that can subsequently produce a pair of customized glasses for the user.
摘要:
A 3D modeling system for automatically generating fully-textured 3D models of objects from a sequence of images taken around the objects is disclosed. There are several processes developed to facilitate the operation of the 3D modeling system by an ordinary skilled person. One of the processes is the automatic calibration of a camera using only a portion of a calibration disc to essentially provide a larger effective field of view of the camera. Another process is a space carving process that subdivides volumetric cells recursively to fit to a 3D object using a tree structure that encodes the entire process. Still another process is a 3D mesh model generation process that begins with the tree structure and generates self-constraint and interconnected triangles, in a sense that all triangles intersect with each other either not at all or at common boundary faces, to represent the shape of the 3D object. Yet still another process is a textured patch process that provides a useful mechanism for a user to edit and modify a fully-textured 3D model in a desired manner by the user.
摘要:
Methods of manufacturing a custom arthroplasty resection guide or jig are disclosed herein. For example, one method may include: generating MRI knee coil two dimensional images, wherein the knee coil images include a knee region of a patient; generating MRI body coil two dimensional images, wherein the body coil images include a hip region of the patient, the knee region of the patient and an ankle region of the patient; in the knee coil images, identifying first locations of knee landmarks; in the body coil images, identifying second locations of the knee landmarks; run a transformation with the first and second locations, causing the knee coil images and body coil images to generally correspond with each other with respect to location and orientation.
摘要:
A custom arthroplasty guide and a method of manufacturing such a guide are disclosed herein. The guide manufactured includes a mating region configured to matingly receive a portion of a patient bone associated with an arthroplasty procedure for which the custom arthroplasty guide is to be employed. The mating region includes a surface contour that is generally a negative of a surface contour of the portion of the patient bone. The surface contour of the mating region is configured to mate with the surface contour of the portion of the patient bone in a generally matching or interdigitating manner when the portion of the patient bone is matingly received by the mating region. The method of manufacturing the custom arthroplasty guide includes: a) generating medical imaging slices of the portion of the patient bone; b) identifying landmarks on bone boundaries in the medical imaging slices; c) providing model data including image data associated with a bone other than the patient bone; d) adjusting the model data to match the landmarks; e) using the adjusted model data to generate a three dimensional computer model of the portion of the patient bone; f) using the three dimensional computer model to generate design data associated with the custom arthroplasty guide; and g) using the design data in manufacturing the custom arthroplasty guide.
摘要:
A custom arthroplasty guide and a method of manufacturing such a guide are disclosed herein. The guide manufactured includes a mating region configured to matingly receive a portion of a patient bone associated with an arthroplasty procedure for which the custom arthroplasty guide is to be employed. The mating region includes a surface contour that is generally a negative of a surface contour of the portion of the patient bone. The surface contour of the mating region is configured to mate with the surface contour of the portion of the patient bone in a generally matching or interdigitating manner when the portion of the patient bone is matingly received by the mating region. The method of manufacturing the custom arthroplasty guide includes: a) generating medical imaging slices of the portion of the patient bone; b) identifying landmarks on bone boundaries in the medical imaging slices; c) providing model data including image data associated with a bone other than the patient bone; d) adjusting the model data to match the landmarks; e) using the adjusted model data to generate a three dimensional computer model of the portion of the patient bone; f) using the three dimensional computer model to generate design data associated with the custom arthroplasty guide; and g) using the design data in manufacturing the custom arthroplasty guide.
摘要:
A custom arthroplasty guide and a method of manufacturing such a guide are disclosed herein. The method of manufacturing the custom arthroplasty guide includes: a) generating medical imaging slices of the portion of the patient bone; b) identifying landmarks on bone boundaries in the medical imaging slices; c) providing model data including image data associated with a bone other than the patient bone; d) adjusting the model data to match the landmarks; e) using the adjusted model data to generate a three dimensional computer model of the portion of the patient bone; f) using the three dimensional computer model to generate design data associated with the custom arthroplasty guide; and g) using the design data in manufacturing the custom arthroplasty guide.
摘要:
A method and apparatus for generating exportable patches are disclosed. The exportable patches representing a mesh model are respectively generated using a test-and-merge procedure. A patch is a collection of the polygons with the property that every polygon in the patch shares at least one edge with some other polygons in the same patch. In addition, all patches have the properties that the union of all the polygons contains all the polygons of the mesh, and that no two patches contain the same polygon. Exporting such patches in image files makes it possible for a user to alter or modify the texture mapping for a particular patch in a desirable way.
摘要:
Methods of manufacturing a custom arthroplasty resection guide or jig are disclosed herein. For example, one method may include: generating MRI knee coil two dimensional images, wherein the knee coil images include a knee region of a patient; generating MRI body coil two dimensional images, wherein the body coil images include a hip region of the patient, the knee region of the patient and an ankle region of the patient; in the knee coil images, identifying first locations of knee landmarks; in the body coil images, identifying second locations of the knee landmarks; run a transformation with the first and second locations, causing the knee coil images and body coil images to generally correspond with each other with respect to location and orientation.
摘要:
A custom arthroplasty guide and a method of manufacturing such a guide are disclosed herein. The method of manufacturing the custom arthroplasty guide includes: a) generating medical imaging slices of the portion of the patient bone; b) identifying landmarks on bone boundaries in the medical imaging slices; c) providing model data including image data associated with a bone other than the patient bone; d) adjusting the model data to match the landmarks; e) using the adjusted model data to generate a three dimensional computer model of the portion of the patient bone; f) using the three dimensional computer model to generate design data associated with the custom arthroplasty guide; and g) using the design data in manufacturing the custom arthroplasty guide.