摘要:
A number of variations are provided of a device that provides an amplified single polarization optical signal. Each of these relies on the use of a non-polarization maintaining gain medium through which the signal is directed, and a polarization shifter and reflector that direct the signal back through the same gain medium with a shifted polarization state. An input polarization beamsplitter directs the returning optical signal away to an output, based on its shifted polarization state. The embodiments of the invention include the use of double-clad fiber. Multiple stages may be used to provide specific amplification parameters. In one embodiment, both amplification stages reside in the same polarization shifting optical path. A polarization maintaining amplifier of this type may be used as part of a master oscillator-power amplifier, in which polarization maintaining fiber is used as part of the source laser. Wavelength selective components are also used in certain embodiments of the invention, to allow for wavelength selectivity, as well as a single polarization state, in amplifiers, lasers and amplified spontaneous emission (ASE). In one embodiment, an optical circulator is used to allow the amplified, shifted polarization state signals to be directed away from the input to a desired output port. A feedback loop may also be used to control the polarization state at the amplifier output. A polarization beamsplitter at the output directs light not having the desired polarization state to a photodetector, the output of which is used by a polarization controller at the input, such that the input polarization state is adjusted until the control signal from the photodetector is minimized.
摘要:
A number of variations are provided of a device that provides an amplified single polarization optical signal. Each of these relies on the use of a non-polarization maintaining gain medium through which the signal is directed, and a polarization shifter and reflector that direct the signal back through the same gain medium with a shifted polarization state. An input polarization beamsplitter directs the returning optical signal away to an output, based on its shifted polarization state. The embodiments of the invention include the use of double-clad fiber. Multiple stages may be used to provide specific amplification parameters. In particular, a fiber with a relatively large mode field diameter may be used to enable high pulse power applications. Wavelength selective components are used in certain embodiments of the invention, to allow for wavelength selectivity, as well as a single polarization state, in amplifiers, lasers and amplified spontaneous emission (ASE).
摘要:
An optical fiber used as the active amplifying medium in a fiber laser is arranged to have a high insertion loss at an undesired frequency, while retaining a low insertion loss at a desired lasing frequency. In one embodiment, loss at a Raman-shifted frequency is introduced by using an optical fiber which has multiple claddings with an index profile that includes an elevated index region located away from the core, but within the evanescent coupling region of the core. A distributed loss, which can be enhanced by bending, is produced at the Raman frequency which effectively raises the threshold at which Raman scattering occurs in the fiber and therefore results in a frequency-selective fiber. In another embodiment, an absorbing layer is placed around the core region. The absorbing layer is chosen to have a sharp absorption edge so that it absorbs highly at the Raman-shifted wavelength, but minimally at the desired lasing wavelength. In still another embodiment, the optical fiber is constructed with a core with long period gratings formed therein. The gratings are fabricated with a periodicity selected to provide a relatively high insertion loss at the Raman frequency while simultaneously providing a relatively low insertion loss at the lasing frequency. In accordance with yet another embodiment, a bend loss technique is used to suppress amplified spontaneous emission at an unwanted wavelength due to a competing atomic energy level system in a fiber laser.
摘要:
An optical fiber used as the active amplifying medium in a fiber laser is arranged to have a high insertion loss at an undesired frequency, while retaining a low insertion loss at a desired lasing frequency. In one embodiment, loss at a Raman-shifted frequency is introduced by using an optical fiber which has multiple claddings with an index profile that includes an elevated index region located away from the core, but within the evanescent coupling region of the core. A distributed loss, which can be enhanced by bending, is produced at the Raman frequency which effectively raises the threshold at which Raman scattering occurs in the fiber and therefore results in a frequency-selective fiber. In another embodiment, an absorbing layer is placed around the core region. The absorbing layer is chosen to have a sharp absorption edge so that it absorbs highly at the Raman-shifted wavelength, but minimally at the desired lasing wavelength. In still another embodiment, the optical fiber is constructed with a core with long period gratings formed therein. The gratings are fabricated with a periodicity selected to provide a relatively high insertion loss at the Raman frequency while simultaneously providing a relatively low insertion loss at the lasing frequency. In accordance with yet another embodiment, a bend loss technique is used to suppress amplified spontaneous emission at an unwanted wavelength due to a competing atomic energy level system in a fiber laser.
摘要:
Power scaling by multiplexing multiple fiber gain sources with different wavelengths, pulsing or polarization modes of operation is achieved through multiplex combining of the multiple fiber gain sources to provide high power outputs, such as ranging from tens of watts to hundreds of watts, provided on a single mode or multimode fiber.
摘要:
An optical fiber used as the active amplifying medium in a fiber laser is arranged to have a high insertion loss at an undesired frequency, while retaining a low insertion loss at a desired lasing frequency. In one embodiment, loss at a Raman-shifted frequency is introduced by using an optical fiber which has multiple claddings with an index profile that includes an elevated index region located away from the core, but within the evanescent coupling region of the core. A distributed loss, which can be enhanced by bending, is produced at the Raman frequency which effectively raises the threshold at which Raman scattering occurs in the fiber and therefore results in a frequency-selective fiber. In another embodiment, an absorbing layer is placed around the core region. The absorbing layer is chosen to have a sharp absorption edge so that it absorbs highly at the Raman-shifted wavelength, but minimally at the desired lasing wavelength. In still another embodiment, the optical fiber is constructed with a core with long period gratings formed therein. The gratings are fabricated with a periodicity selected to provide a relatively high insertion loss at the Raman frequency while simultaneously providing a relatively low insertion loss at the lasing frequency. In accordance with yet another embodiment, a bend loss technique is used to suppress amplified spontaneous emission at an unwanted wavelength due to a competing atomic energy level system in a fiber laser.
摘要:
Power scaling by multiplexing multiple fiber gain sources with different wavelengths, pulsing or polarization modes of operation is achieved through multiplex combining of the multiple fiber gain sources to provide high power outputs, such as ranging from tens of watts to hundreds of watts, provided on a single mode or multimode fiber.
摘要:
Power scaling by multiplexing multiple fiber gain sources with different wavelengths, pulsing or polarization modes of operation is achieved through multiplex combining of the multiple fiber gain sources to provide high power outputs, such as ranging from tens of watts to hundreds of watts, provided on a single mode or multimode fiber.
摘要:
A laser apparatus for generating optical pulses is disclosed, said laser apparatus has a reflecting gain element preferably including a fiber gain medium. The reflecting gain element is coupled to a controllable reflecting/transmitting module having a reflecting state and a transmitting state, wherein the controllable reflecting/transmitting means are operable to switch from the transmitting state to the reflecting state to initiate a build-up of an optical pulse, and to switch back to the transmitting state for outputting the optical pulse before it reaches the reflecting/transmitting means after a cavity roundtrip. In a preferred embodiment, the controllable reflecting/transmitting module includes an acousto-optic switch at an output end of a laser operable to output the optical pulse in zeroth diffraction order.
摘要:
All-fiber coupling architectures include at least one fiber gain media, e.g. a fiber amplifier or a fiber laser, providing for the coupling light from one or more multi-wavelength pump sources propagating in a multimode core fiber at multiple points along a double clad fiber or at least at one point along multiple double clad fibers having their inner claddings fused to the multimode core fiber. The latter arrangement provides for a low cost utility multi-signal fiber amplifier for telecommunication applications.