摘要:
An apparatus and method for rapid real time imaging with wavefield energy using a C.P.U. programmed to process data derived from wavefield energy that has been transmitted and scattered by an object so as to reconstruct a wavefield image of the object. Electronic signals are propagated and are transduced into wavefield energy waves which in turn are propagated toward the object. Detectors detect the wavefield energy waves scattered by the object. The detected wavefield energy waves are then electronically processed and input into a high-speed digital computer which may comprise a C.P.U. and/or a C.P.U. in combination with an array or parallel processor. Data is also prepared and input to the computer representing the incident field and the computer then reconstructs a high-quality image of the object having high spacial resolution and including actual properties of the object. The media in which the object is embedded may be fluid or solid, homogeneous, or layered (such as stratigraphic layering, or ocean velocity layers, or layering of composites in nondestructive imaging applications), or may consist of porous material (either sedimentary deposits or composites in nondestructive testing).
摘要:
An apparatus and method for rapid real time imaging with wavefield energy by inverse scattering using a C.P.U programmed to process data derived from wavefield energy that has been transmitted and scattered by an object so as to reconstruct a wavefield image of the object. Electronic signals are propagated and are transduced into wavefield energy waves which in turn are propagated toward the object. Detector means detect the wavefield energy waves scattered by the object. The detected wavefield energy waves are then electronically processed and input into a high-speed digital computer which may comprise a C.P.U. and/or a C.P.U in combination with an array or parallel processor. Data is also prepared and input to the computer representing the incident field and the computer then reconstructs a high-quality image of the object having high spacial resolution and including actual internal viscous and elastic properties of the object through the use of new inverse scattering techniques used in the data processing steps. The media in which the object is embedded may be fluid or solid, homogeneous, or layered (such as stratigraphic layering, or ocean velocity layers, or layering of composites in nondestructive imaging applications), or may consist of porous material (either sedimentary deposits or composites in nondestructive testing).
摘要:
A breast scanning system configured to scan a breast of a patient includes a table configured to receive the patient thereon. The table has an aperture formed therein configured to receive the breast of the patient pendant therethrough and positionable over and into a bath configured to contain a medium. An armature is movably disposable in the bath. The armature carries transducer arrays that are disposable in the bath, and configured to transmit and receive acoustic and/or ultrasound signals. A manual control is operatively coupled to the armature to manually move the armature and thus the transducer arrays within the bath.
摘要:
A breast scanning system configured to scan a breast of a patient includes a table configured to receive the patient thereon. The table has an aperture formed therein configured to receive the breast of the patient pendant therethrough and positionable over and into a bath configured to contain a medium. An armature is movably disposable in the bath. The armature carries transducer arrays that are disposable in the bath, and configured to transmit and receive acoustic and/or ultrasound signals. A manual control is operatively coupled to the armature to manually move the armature and thus the transducer arrays within the bath.
摘要:
Methods for imaging the internal structures of an object using an acoustic wave field are provided. In one aspect, for example, a method of imaging internals of a physical object using acoustic waves may include transmitting an acoustic wave field toward the object, receiving a resultant acoustic wave field with a receiver, where the resultant acoustic wave field is in response to the transmitted acoustic wave field reflected from or transmitted through the object, and determining a predicted resultant acoustic wave field derived from a model of the object. The method may also include determining a residual between the predicted resultant acoustic wave field and the resultant acoustic wave field, and back propagating the residual to determine corrections to the model of the object. In another aspect, the above recited steps may be further iterated to successively refine the model of the object over a number of iterations until a predefined condition is reached.
摘要:
Methods for imaging the internal structures of an object using an acoustic wave field are provided. In one aspect, for example, a method of imaging internals of a physical object using acoustic waves may include transmitting an acoustic wave field toward the object, receiving a resultant acoustic wave field with a receiver, where the resultant acoustic wave field is in response to the transmitted acoustic wave field reflected from or transmitted through the object, and determining a predicted resultant acoustic wave field derived from a model of the object. The method may also include determining a residual between the predicted resultant acoustic wave field and the resultant acoustic wave field, and back propagating the residual to determine corrections to the model of the object. In another aspect, the above recited steps may be further iterated to successively refine the model of the object over a number of iterations until a predefined condition is reached.
摘要:
A transmission wave field imaging method, comprising the transmission of an incident wave field into an object, the incident wave field propagating into the object and, at least, partially scattering. Also includes the measuring of a wave field transmitted, at least in part, through an object to obtain a measured wave field, the measured wave field based, in part, on the incident wave field and the object. Additionally, the processing of the measured wave field utilizing a recursive reconstruction algorithm to generate an image data set representing at least one image of the object.
摘要:
This invention describes a method for increasing the speed of the parabolic marching method by about a factor of 256. Firstly, to form true 3-D images or 3-D assembled from 2-D slices. Secondly, the frequency of operation can be increased to 5 MHz to match the operating frequency of reflection tomography. This allow the improved imaging of speed of sound which in turn is used to correct errors in focusing delays in reflection tomography imaging. This allows reflection tomography to reach or closely approach its theoretical spatial resolution of ½ to ¾ wave lengths. A third benefit of increasing the operating frequency of inverse scattering to 5 MHz is the improved out of topographic plane spatial resolution. This improves the ability to detect small lesions. It also allow the use of small transducers and narrower beams so that slices can be made closer to the chest wall.
摘要:
A transmission wave field imaging method, comprising the transmission of an incident wave field into an object, the incident wave field propagating into the object and, at least, partially scattering. Also includes the measuring of a wave field transmitted, at least in part, through an object to obtain a measured wave field, the measured wave field based, in part, on the incident wave field and the object. Additionally, the processing of the measured wave field utilizing a parabolic approximation reconstruction algorithm to generate an image data set representing at least one image of the object.
摘要:
A method for increasing the speed of the parabolic marching method by about a factor of 256. This increase in speed can be used to accomplish a number of important objectives. Firstly, the speed can be used to collect data to form true 3-D images or 3-D assembled from 2-D slices. Speed allows larger images to be made. Secondly, the frequency of operation can be increased to 5 MHz to match the operating frequency of reflection tomography. This allow the improved imaging of speed of sound which in turn is used to correct errors in focusing delays in reflection tomography imaging. This allows reflection tomography to reach or closely approach its theoretical spatial resolution of ½ to ¾ wave lengths. A third benefit of increasing the operating frequency of inverse scattering to 5 MHz is the improved out of topographic plane spatial resolution. This improves the ability to detect small lesions. It also allow the use of small transducers and narrower beams so that slices can be made closer to the chest wall.