摘要:
High precision, non-contact sensors are disclosed which optically measure distances from the sensor head to the surface or surfaces under test. The modular design of the system allows a large selection of identically packaged sensor heads with differing ranges and resolutions. Built-in algorithms automatically adjust exposure time and process data to maximize accuracy for most applications. The sensor heads contain a laser diode source which features visible radiation as well as infrared radiation to faciltiate set-up and use of the system. A unique optical system focuses the laser beam on a detector array. That data is processed to determine distance for point range sensors and surface profile for line range sensors. High speed algorithms are employed for reducing the data from the imaging array in the sensor head to meaningful range data. To compensate for widely varying surfaces of the software can vary the exposure and laser power to yield a dynamic range of 10.sup.7. The user can reject certain areas of the optical image and, therefore, eliminate erroneous readings that could be caused by multiple reflections from complex geometries. The operator can also select up to sixteen different heads, one at a time, for multiple measurements. Operator interface is conveniently provided through the keyboard to an attached computer system.
摘要:
A laser based, noncontacting measurement instrument is particularly adapted for the printed circuit board drilling industry to measure drill diameter, runout, and tip position under actual operating conditions. A laser beam is focused in space and the amount of light occluded by the drill bit as the bit is passed through the beam is sensed by a detector. Diameter, runout, and tip position are calculated by measuring the amount of occlusion, monitoring the position and angular orientation of the rotating drill, and correlating the amount of light occlusion to the position and angular orientation of the drill. The instrument automatically compensates for dust and debris in the optical path.
摘要:
High speed high precision alignment sensor systems for use on surface mount component placement machines. Light systems are used to correctly align and position component parts. The sensor system consists of a light source and an optical lens system causing more of the light from a light source to pass the component in order to obtain a sharper component image on a sensor array. Due to the optical lens systems disclosed, either low powered lasers, light emitting diodes, or other suitable light sources can be used in the system since optical efficiency is substantially increased over prior systems since more of the radiated light is collected from the light source for measurement at the detector. The sensor system is mounted directly on the carrying mechanism for the surface mount component placement machine. During transit of the component between the bin of components and the circuit board upon which the component is to be placed, the component is rotated and the sharp shadow which falls on the detector array is monitored. Several processing algorithms are disclosed for determining correct component angular orientation and coordinate (X,Y) location of the component on the quill. Thereafter, the sensor sends correcting signals to the component placement machine.
摘要:
A high speed, high precision laser-based semiconductor lead measurement system for use on surface mount component placement machines. A laser system is used to accurately sense the position and condition of each of the many leads used on integrated circuits prior to their placement on a surface mount circuit board by a pick and place machine. Using one, two or three laser beams, the non-contact sensor system can, with the highest degree of resolution, determine lateral orientation and coplanarity of leads for integrated circuit components, even those having an ultra-fine pitch. Determination of the lead position by the invention is based on the integrated circuit leads occluding the light of one or more precisely directed and focused laser light sources. Each integrated circuit lead is passed through the focal point of a laser beam. The position of each lead is determined when it blocks all or a portion of the light of the laser beam. A processor means is used to calculate the actual position of each lead. The difference between the actual position of the lead and the nominal position of the lead can then be computed. The position of each lead is then sorted to determine the greatest deviation of any lead from a best fit plane. The processor may then either generate a reject or a repositioning signal to the component placement machine for proper placement of the integrated circuit upon the surface mount circuit board.
摘要:
The system of the present invention reports a signal related to a physical condition of an object, such as an electronic component, with the most basic realization of the system including a vacuum quill for releasably holding the object and a motion control system for rotating the quill. The invention includes control electronics coupled to the detector for providing a trigger signal where the detector is oriented to view a stripe in a viewing plane perpendicular to the central axis of the quill, and to provide an image of the stripe. The control electronics sends a plurality of trigger signals to the detector while the motion control system rotates the quill, with each trigger signal triggering the acquisition of another image of a stripe. A processing circuit processes the plurality of images of the stripes to provide the signal related to the physical condition of the object, which can include the orientation or location of the component, the presence or absence of balls on a ball grid array, the height of a specific lead on a leaded component, the distance between the leads on a leaded component or the coplanarity of features on the component. A method for picking and placing components is also disclosed for use with the apparatus of the present invention.
摘要:
The present invention is a light based detection system for providing a low cost, very fast and very accurate measurements of lead positions and heights for integrated circuit board components. The alignment detections systems of the present invention are preferably located on a component placement head. The detector is a linear or rectangular array of pixels. The light path between the light source and the detector array is directed by the optical components across one or more leads in a plane that is neither parallel to nor perpendicular to the seating plane of the component. The light path is directed across the relevant leads without substantial interference from the body of the component or the other leads not being measured. A digital processor analyzes the measurements of the light sensitive detector to determine positions and/or coplanarity of the leads.
摘要:
The present invention includes a system for providing a signal related to a physical condition of an object, such as an electronic component. Various types of electronic components may be used with the present invention, including leaded components, column, pin or grid array packages, and the like. The system includes a quill for releasably holding the object. The object has a major surface defining a plane, and a motion control system for rotating the quill about a central axis. Control electronics in the invention provide a plurality of trigger signals to each of two detectors, each detector adapted to view the same stripe in the plane upon receipt of a trigger signal and to output an image of the stripe. The detectors view a plurality of stripes while the motion control system rotates the quill, and the output from the detectors is received by processing circuitry for processing the plurality of images of the stripes to provide the signal related to the physical condition of the object. The signal may be computed to provide the orientation of the object, the location of a feature on the object, the distance between leads on a leaded component or the coplanarity of raised features on the object. A method of picking and placing components is also disclosed for use with the apparatus of the present invention.
摘要:
A high speed, high precision laser-based semiconductor lead measurement system for use on surface mount component placement machines. A multi-beam laser system is used to accurately sense the position and condition of each of the many leads used on integrated circuits prior to their placement on a surface mount circuit board by a pick and place machine. Using two, three or four laser beams, the non-contact sensor system can, with the highest degree of resolution, determine lateral orientation, height, colinearity, and coplanarity of leads for integrated circuit components, even those having an ultra-fine pitch. Determination of the lead position by the invention is based on the integrated circuit leads occluding the light of one or more precisely directed and focused laser light sources. Each integrated circuit lead is passed nominally through the focal point of a laser beam. The position of each lead is determined when it blocks all or a portion of the light of the laser beam. A processor means is used to calculate the actual position of each lead. The difference between the actual position of the lead and the nominal position of the lead can then be computed. The position of each lead is then sorted to determine the greatest deviation of any lead from a best fit line or from the Seating Plane. The processor may then either generate a reject or a repositioning signal to the component placement machine for proper placement of the integrated circuit upon the surface mount circuit board.
摘要:
An optical system designed to obtain anamorphic magnification without increasing overall system package size and without diminishing post-magnification light levels. Specifically, an output light beam passes a collimating lens and enters a prism at a near normal incidence to produce slight angular minification. The prism is aligned so that the light exits the prism at a steep angle thereby providing large angular magnification. The beam may then be focused. Additional prisms, appropriate angles between prism faces or prism orientation may be used to obtain various magnification or deflection angles depending on the desired application of the prismatic anamorphic optical system.