摘要:
A method of automatically optimizing the controllable parameters related to producing printed material on a hardcopy output device is provided, along with a hardcopy output device configured for implementing this method. Users require different types of printed objects to have different characteristics. Specifically, business graphics need to be sharp and vivid, photographic images should look realistic, and text must be black, crisp and clear. By extracting, analyzing and conditioning data generated during a printing stream, the various regions of text, graphics and photographic images on a sheet are distinguished, characterized, and printed. The resulting hardcopy output has a custom balancing of color which is pleasing to the human eye for each type of image printed, and which has print characteristics tailored for the specific elements on the page.
摘要:
At least one certain primary or secondary color is established that receives special treatment for at least one printing medium. Such treatment may include (1) using more than two drops of primaries per pixel for binary printing of a particular secondary; or (2) binary-printing the chromatic primary or secondary--but not other hues--after rendition, by use of a "superpixel"; or (3) application of, in effect, a nonintegral number, greater than one, of ink drops per pixel; or (4) combinations of these treatments. As an example of the first of these treatments--using inks optimized for plain paper at one drop of ink for primaries and two (one of each of two primaries) for secondaries--red is printed on transparency film as one drop of yellow ink and two of magenta in each pixel. As to the second treatment, the superpixel is preferably a group of pixels (e.g., a two-by-two array) including the target pixel, in which group each pixel is inked and at least one pixel receives at least two drops of ink.
摘要:
Micro-stepping a print media transport in an ink-jet hard copy apparatus such that the steps are smaller than the nozzle spacing of the drop generators on a printhead when using multiple printheads per colorant provides a resulting higher resolution pixel placement grid and allows choosing which nozzle to fire on which printing pass in order to optimize drop-to-drop alignment between the like colorant printheads.
摘要:
A method of printing on an ink receptive coating (12) which enhances the density of images printed on non-ink receptive substrates (10) by ink-jet techniques is provided. The substrates, such as transparent polyester films, are coated with a layer of an material to a thickness which promotes controlled latent lateral diffusion of the printed ink dots (14a-c). The lateral diffusion is microscopically observed to begin immediately after printing, eventually ceasing as the vehicle of the ink is sufficiently spread and evaporated by the lateral spreading. The optical density of the image increases as the ink diffuses, reaching a maximum density that is considerably greater than otherwise possible without such an ink-coating system and avoids the undesirable surface coalescence of drops (14) which causes a puddled appearance in films not employing latent spreading. Sheets of such printed imaged media are stored in removable sheet protectors of a vapor permeable, water absorbent material such as cellulose acetate, such that dot spread is controlled within the teachings of the invention.
摘要:
A printmode for an inkjet printer including a plurality of print nozzles and an edge guide projecting into a printzone into which at least one of the plurality of print nozzles may be transported for deposition of a fluid onto a print media, the printmode including a printmask defining a print disable zone corresponding to a pre-selected area of the printzone that includes an area of the edge guide that projects into the printzone.
摘要:
The present invention is embodied in a system and method for producing efficient ink drop overlap filled with a pseudo hexagonal grid pattern. In general, the present invention can include an inkjet printhead assembly that incorporates a preprogrammed correction scheme or schemes [1-n] (herein correction scheme will refer to all applications), for correcting systematic ink drop placement errors of the inkjet printhead. The printing system of the present invention uses a unique ink dot pattern, called a pseudo-hexagonal close pack system. The present invention optimizes the addressable grid for dot placement, pseudo hexagonal close pack system, with an efficient geometry for packing circles to fill an area, similar to the hexagonal close pack system. However, the present invention in creating dots on a non-symmetric grid is supported by available software and is not computationally complex.
摘要:
In accordance with the invention, an ink-jet printing system and fluid supply configuration are disclosed that utilize the advantages of reactive fluids while allowing for maximum flexibility in the design and architecture of the ink-jet printing system. The ink-jet-printing apparatus includes a printhead portion having at least one integral printhead portion, the printhead portion having at least two ejector portions; and at least one reservoir portion associated with the printhead portion, the reservoir portion having at least two reservoir chambers, each reservoir chamber for providing fluid to one of the at least two ejector portions, one of the chambers including a reactant fluid and the other chamber including at least one ink non-reactive with the reactant fluid.
摘要:
In one embodiment of the invention, a scanning carriage in a color inkjet printer houses three identical color pens for printing cyan, magenta, and yellow. A separate array of nozzles is associated with each color ink. The nozzle arrays are such that they scan over the same print area of the medium during a single scan. To prevent the wet ink from one color swath being deposited over or bleeding into the wet ink from another color swath during the same scan, only a section of each nozzle array is used for printing during a single scan such that wet ink of two different colors cannot overlap during a single scan. This technique reduces ink bleed between colors as well as paper cockle. In another embodiment, a single tricolor pen is used where a single nozzle plate contains three nozzle arrays, one for each color. A section of each nozzle array is used during a single scan, as described above, to prevent wet ink of two different colors from overlapping during a single scan.
摘要:
An inkjet printer is disclosed with mixed print resolution capabilities. The printed dots have a high resolution monochrome component such as black and lower resolution components such as cyan, magenta and yellow. For increased throughput, a higher resolution black printhead has a wider swath. Various alignments between the printheads and printed dots are disclosed. In one embodiment, the top edges of the smaller color printheads are aligned in a scanning carriage at or near the top of the wider black printhead. In other embodiments, the bottom edges of the smaller color printheads are aligned at or near the bottom of the wider black printhead. In another embodiment, the small color printheads are centered with the wider black printhead.
摘要:
A trap door spittoon system confines airborne ink aerosol satellites generated while purging an inkjet printhead. This systems prevent stray ink aerosol from clinging to undesired surfaces in an inkjet printing mechanism. The printing mechanism has an inkjet printhead that selectively ejects ink during both printing and when purging the printhead by a process known as "spitting." This ink ejection generates as a by-product airborne ink aerosol satellites, which float about the mechanism, often landing in undesirable locations. To confine the ink aerosol generated during purging, the printing mechanism has a spittoon with a mouth that is covered by a trap door mechanism immediately following spitting to capture the stray aerosol within the spittoon. Various pivoting and sliding door embodiments are shown, along with a method of operating an inkjet printing mechanism to confine the wandering inkjet aerosol.