摘要:
A decimal multiplication mechanism for fixed and floating point computation in a computer having a coefficient mechanism without resulting leading zero detection (LZD) and process which assumes that the final product will be M+N digits in length and performs all calculations based on this assumption. Least significant digits that would be truncated are no longer stored, but retained as sticky information which is used to finalize the result product. Once the computation of the product is complete, a final check based on the examination of key bits observed during partial product accumulation is used to determine if the final product is truly M+N digits in length, or M+N−1 digits. If the latter is true, then corrective final product shifting is employed to obtain the proper result. This eliminates the need for dedicated leading zero detection hardware used to determine the number of significant digits in the final product. The corrective final product shifting also incorporates adjustments to the coefficient of the product when the product's exponent is at its extremes and the final product must be brought to be within the precision and range of a given format.
摘要:
A decimal multiplication mechanism for fixed and floating point computation in a computer having a coefficient mechanism without resulting leading zero detection (LZD) and process which assumes that the final product will be M+N digits in length and performs all calculations based on this assumption. Least significant digits that would be truncated are no longer stored, but retained as sticky information which is used to finalize the result product. Once the computation of the product is complete, a final check based on the examination of key bits observed during partial product accumulation is used to determine if the final product is truly M+N digits in length, or M+N−1 digits. If the latter is true, then corrective final product shifting is employed to obtain the proper result. This eliminates the need for dedicated leading zero detection hardware used to determine the number of significant digits in the final product. The corrective final product shifting also incorporates adjustments to the coefficient of the product when the product's exponent is at its extremes and the final product must be brought to be within the precision and range of a given format.
摘要:
Mechanisms for utilizing a reduced lookup table circuit to perform an operation in a data processing device are provided. A first input value is input for selecting a subset of values from the reduced lookup table circuit. The reduced lookup table circuit stores only boundary cell values from a fully filled lookup table corresponding to the reduced lookup table circuit. The subset of values comprises only a subset of boundary cell values corresponding to the first input value. A second value is input and a comparison, by the reduced lookup table circuit, of the second value to each of the boundary cell values in the subset of boundary cell values is performed. The reduced lookup table circuit outputs an output value based on results of the comparison of the second value to each of the boundary cell values in the subset of boundary cell values.
摘要:
Mechanisms for utilizing a reduced lookup table circuit to perform an operation in a data processing device are provided. A first input value is input for selecting a subset of values from the reduced lookup table circuit. The reduced lookup table circuit stores only boundary cell values from a fully filled lookup table corresponding to the reduced lookup table circuit. The subset of values comprises only a subset of boundary cell values corresponding to the first input value. A second value is input and a comparison, by the reduced lookup table circuit, of the second value to each of the boundary cell values in the subset of boundary cell values is performed. The reduced lookup table circuit outputs an output value based on results of the comparison of the second value to each of the boundary cell values in the subset of boundary cell values.
摘要:
Mechanisms for utilizing a reduced lookup table circuit to perform an operation in a data processing device are provided. A first input value is input for selecting a subset of values from the reduced lookup table circuit. The reduced lookup table circuit stores only boundary cell values from a fully filled lookup table corresponding to the reduced lookup table circuit. The subset of values comprises only a subset of boundary cell values corresponding to the first input value. A second value is input and a comparison, by the reduced lookup table circuit, of the second value to each of the boundary cell values in the subset of boundary cell values is performed. The reduced lookup table circuit outputs an output value based on results of the comparison of the second value to each of the boundary cell values in the subset of boundary cell values.
摘要:
Mechanisms for utilizing a reduced lookup table circuit to perform an operation in a data processing device are provided. A first input value is input for selecting a subset of values from the reduced lookup table circuit. The reduced lookup table circuit stores only boundary cell values from a fully filled lookup table corresponding to the reduced lookup table circuit. The subset of values comprises only a subset of boundary cell values corresponding to the first input value. A second value is input and a comparison, by the reduced lookup table circuit, of the second value to each of the boundary cell values in the subset of boundary cell values is performed. The reduced lookup table circuit outputs an output value based on results of the comparison of the second value to each of the boundary cell values in the subset of boundary cell values.
摘要:
The invention proposes a Floating Point Unit (1) with fused multiply add, with one addend operand (eb, fb) and two multiplicand operands (ea, fa; ec, fc), with a shift amount logic (2) which based on the exponents of the operands (ea, eb and ec) computes an alignment shift amount, with an alignment logic (3) which uses the alignment shift amount to align the fraction (fb) of the addend operand, with a multiply logic (4) which multiplies the fractions of the multiplicand operands (fa, fc), with a adder logic (5) which adds the outputs of the alignment logic (3) and the multiply logic (4), with a normalization logic (6) which normalizes the output of the adder logic (5), which is characterized in that a leading zero logic (7) is provided which computes the number of leading zeros of the fraction of the addend operand (fb), and that a compare logic (8) is provided which based on the number of leading zeros and the alignment shift amount computes select signals that indicate whether the most significant bits of the alignment logic (3) output have all the same value in order to: a) control the carry logic of the adder logic (5) and/or b) control a stage of the normalization logic (6).
摘要:
A method is provided for improving a high-speed adder for Floating-Point Units (FPU) in a given computer system. The improved adder utilizes a compound incrementer, a compound adder, a carry network, an adder control/selector, and series of multiplexers (muxes). The carry network performs the end-around-carry function simultaneously to and independent of other required functions optimizing the functioning of the adder. Also, the use of a minimum number of muxes is also utilized to reduce mux delays.
摘要:
A shifter that includes a plurality of shift stages positioned within the shifter, and receiving and shifting input data to generate a shifted result, and a detection circuit coupled at an input of a final shift stage of the plurality of shifters, in a final stage within the shifter. The detection circuit receives a partially shifted vector at the input of the final shift stage along with a predetermined shift amount, and performing an all-one or all-zero detection operation using a portion of the partially shifted vector and the predetermined shift amount, in parallel, to a shifting operation performed by the final shift stage to generate the shifted result.
摘要:
A method is provided for improving a high-speed adder for Floating-Point Units (FPU) in a given computer system. The improved adder utilizes a compound incrementer, a compound adder, a carry network, an adder control/selector, and series of multiplexers (muxes). The carry network performs the end-around-carry function simultaneously to and independent of other required functions optimizing the functioning of the adder. Also, the use of a minimum number of muxes is also utilized to reduce mux delays.