摘要:
A memory system includes a master device, such as a graphics controller or processor, and an integrated circuit memory device operable in dynamic memory bank count and page size mode. The integrated circuit memory device includes a first and second row of storage cells coupled to a row of sense amplifiers including a first and second plurality of sense amplifiers. During the first mode of operation, a first plurality of data is transferred from the first plurality of storage cells to the row of sense amplifiers. During the second mode of operation, a second plurality of data is transferred from the first row of storage cells to the first plurality of sense amplifiers and a third plurality of data is transferred from the second row of storage cells to the second plurality of sense amplifiers. The second and third plurality of data is accessible simultaneously from the memory device interface during the second mode of operation. In an embodiment, the second plurality of data is transferred from the first half of the first row and the third plurality of data is transferred from the second half of the second row.
摘要:
An integrated circuit memory device has a storage array with an adjustable number of memory banks, a row of sense amplifiers to access storage cells in the storage array; and memory access control circuitry. The memory access control circuitry provides a first number of memory banks and a first page size in the integrated circuit memory device in a first mode of operation, and provides a second number of memory banks and a second page size in the integrated circuit memory device in a second mode of operation. The memory access control circuitry includes logic circuitry to adjust the number of memory banks in the integrated circuit memory device, and to adjust the page size of the integrated circuit memory device.
摘要:
An output driver has an output multiplexor and an output current driver. The output multiplexor receives a data signal and outputs a q-node signal. The output current 5 river receives the q-node signal and drives a bus based on the q-node signal. The output multiplexor processes the data signal in various ways to generate the q-node signal. The output current driver is responsive to current control bits to select a amount of output drive current. In addition, the output multiplexor is controlled such that the output impedance of the output current driver is maintained within a predetermined range.
摘要:
An integrated circuit memory device has a storage array with an adjustable number of memory banks, a row of sense amplifiers to access storage cells in the storage array; and memory access control circuitry. The memory access control circuitry provides a first number of memory banks and a first page size in the integrated circuit memory device in a first mode of operation, and provides a second number of memory banks and a second page size in the integrated circuit memory device in a second mode of operation. The memory access control circuitry includes logic circuitry to adjust the number of memory banks in the integrated circuit memory device, and to adjust the page size of the integrated circuit memory device.
摘要:
A memory system includes a master device, such as a graphics controller or processor, and an integrated circuit memory device operable in dynamic memory bank count and page size mode. The integrated circuit memory device includes a first and second row of storage cells coupled to a row of sense amplifiers including a first and second plurality of sense amplifiers. During the first mode of operation, a first plurality of data is transferred from the first plurality of storage cells to the row of sense amplifiers. During the second mode of operation, a second plurality of data is transferred from the first row of storage cells to the first plurality of sense amplifiers and a third plurality of data is transferred from the second row of storage cells to the second plurality of sense amplifiers. The second and third plurality of data is accessible simultaneously from the memory device interface during the second mode of operation. In an embodiment, the second plurality of data is transferred from the first half of the first row and the third plurality of data is transferred from the second half of the second row.
摘要:
Apparatus and methods allocate I/O bandwidth of an electrical component, such as an IC, by configuring an I/O interface into various types of interfaces. In an embodiment of the present invention, an I/O interface is configured into either a bi-directional contact, unidirectional contact (including either a dedicated transmit or dedicated receive contact) or a maintenance contact used in a maintenance or calibration mode of operation. The I/O interface is periodically reconfigured to optimally allocate I/O bandwidth responsive to system parameters, such as changing data workloads in the electronic components. System parameters include, but are not limited to, 1) number of transmit-receive bus turnarounds; 2) number of transmit and/or receive data packets; 3) user selectable setting 4) number of transmit and/or receive commands; 5) direct requests from one or more electronic components; 6) number of queued transactions in one or more electronic components; 7) transmit burst-length setting, 8) duration or cycle count of bus commands, and control strobes such as address/data strobe, write enable, chip select, data valid, data ready; 9) power and/or temperature of one or more electrical components; 10) information from executable instructions, such as a software application or operating system; 11) multiple statistics over respective periods of time to determine if using a different bandwidth allocation would result in better performance. The importance of a system parameter may be weighted over time in an embodiment of the present invention.
摘要:
Apparatus and methods allocate I/O bandwidth of an electrical component, such as an IC, by configuring an I/O interface into various types of interfaces. In an embodiment of the present invention, an I/O interface is configured into either a bi-directional contact, unidirectional contact (including either a dedicated transmit or dedicated receive contact) or a maintenance contact used in a maintenance or calibration mode of operation. The I/O interface is periodically reconfigured to optimally allocate I/O bandwidth responsive to system parameters, such as changing data workloads in the electronic components. System parameters include, but are not limited to, 1) number of transmit-receive bus turnarounds; 2) number of transmit and/or receive data packets; 3) user selectable setting 4) number of transmit and/or receive commands; 5) direct requests from one or more electronic components; 6) number of queued transactions in one or more electronic components; 7) transmit burst-length setting, 8) duration or cycle count of bus commands, and control strobes such as address/data strobe, write enable, chip select, data valid, data ready; 9) power and/or temperature of one or more electrical components; 10) information from executable instructions, such as a software application or operating system; 11) multiple statistics over respective periods of time to determine if using a different bandwidth allocation would result in better performance. The importance of a system parameter may be weighted over time in an embodiment of the present invention.
摘要:
Apparatus and methods allocate I/O bandwidth of an electrical component, such as an IC, by configuring an I/O interface into various types of interfaces. In an embodiment of the present invention, an I/O interface is configured into either a bidirectional contact, unidirectional contact (including either a dedicated transmit or dedicated receive contact) or a maintenance contact used in a maintenance or calibration mode of operation. The I/O interface is periodically reconfigured to optimally allocate I/O bandwidth responsive to system parameters, such as changing data workloads in the electronic components. System parameters include, but are not limited to, 1) number of transmit-receive bus turnarounds; 2) number of transmit and/or receive data packets; 3) user selectable setting 4) number of transmit and/or receive commands; 5) direct requests from one or more electronic components; 6) number of queued transactions in one or more electronic components; 7) transmit burst-length setting, 8) duration or cycle count of bus commands, and control strobes such as address/data strobe, write enable, chip select, data valid, data ready; 9) power and/or temperature of one or more electrical components; 10) information from executable instructions, such as a software application or operating system; 11) multiple statistics over respective periods of time to determine if using a different bandwidth allocation would result in better performance. The importance of a system parameter may be weighted over time in an embodiment of the present invention.
摘要:
Apparatus and methods allocate I/O bandwidth of an electrical component, such as an IC, by configuring an I/O interface into various types of interfaces. In an embodiment of the present invention, an I/O interface is configured into either a bi-directional contact, unidirectional contact (including either a dedicated transmit or dedicated receive contact) or a maintenance contact used in a maintenance or calibration mode of operation. The I/O interface is periodically reconfigured to optimally allocate I/O bandwidth responsive to system parameters, such as changing data workloads in the electronic components. System parameters include, but are not limited to, 1) number of transmit-receive bus turnarounds; 2) number of transmit and/or receive data packets; 3) user selectable setting 4) number of transmit and/or receive commands; 5) direct requests from one or more electronic components; 6) number of queued transactions in one or more electronic components; 7) transmit burst-length setting, 8) duration or cycle count of bus commands, and control strobes such as address/data strobe, write enable, chip select, data valid, data ready; 9) power and/or temperature of one or more electrical components; 10) information from executable instructions, such as a software application or operating system; 11) multiple statistics over respective periods of time to determine if using a different bandwidth allocation would result in better performance. The importance of a system parameter may be weighted over time in an embodiment of the present invention.
摘要:
Apparatus and methods allocate I/O bandwidth of an electrical component, such as an IC, by configuring an I/O interface into various types of interfaces. In an embodiment of the present invention, an I/O interface is configured into either a bi-directional contact, unidirectional contact (including either a dedicated transmit or dedicated receive contact) or a maintenance contact used in a maintenance or calibration mode of operation. The I/O interface is periodically reconfigured to optimally allocate I/O bandwidth responsive to system parameters, such as changing data workloads in the electronic components. System parameters include, but are not limited to, 1) number of transmit-receive bus turnarounds; 2) number of transmit and/or receive data packets; 3) user selectable setting 4) number of transmit and/or receive commands; 5) direct requests from one or more electronic components; 6) number of queued transactions in one or more electronic components; 7) transmit burst-length setting, 8) duration or cycle count of bus commands, and control strobes such as address/data strobe, write enable, chip select, data valid, data ready; 9) power and/or temperature of one or more electrical components; 10) information from executable instructions, such as a software application or operating system; 11) multiple statistics over respective periods of time to determine if using a different bandwidth allocation would result in better performance. The importance of a system parameter may be weighted over time in an embodiment of the present invention.