Abstract:
The present invention relates to a method for manufacturing a film having an oxygen transmission rate in the range of from 1 cc/m2/24 h to 500 cc/m2/24 h according to ASTM D-3985, at a relative humidity of more than 50% at 25° C., or higher than 75% at 25° C., or higher than 85% at 25° C., wherein the method comprises the steps of: providing a first suspension comprising a microfibrillated cellulose, wherein the dry content of the suspension is in the range of from 0.1 to 10% by weight, adding a wet strength additive to said first suspension, at an amount of from 0.1 to 10 weight-% based on the amount of microfibrillated cellulose (dry/dry), thereby forming a mixture of the microfibrillated cellulose and the wet strength additive, applying said mixture to a substrate to form a fibrous web and drying said web to form said film. The present invention also relates to a film produced according to the method.
Abstract:
The present invention relates to a method for manufacturing a film having an oxygen transmission rate in the range of from 1 cc/m2/24 h to 500 cc/m2/24 h according to ASTM D-3985, at a relative humidity of more than 50% at 25° C., or higher than 75% at 25° C., or higher than 85% at 25° C., wherein the method comprises the steps of: providing a first suspension comprising a microfibrillated cellulose, wherein the dry content of the suspension is in the range of from 0.1 to 10% by weight, adding a wet strength additive to said first suspension, at an amount of from 0.1 to 10 weight-% based on the amount of microfibrillated cellulose (dry/dry), thereby forming a mixture of the microfibrillated cellulose and the wet strength additive, applying said mixture to a substrate to form a fibrous web and drying said web to form said film. The present invention also relates to a film produced according to the method.
Abstract:
A method of manufacturing a film comprising microfibrillated cellulose, wherein the method comprises the steps of: providing a first suspension comprising microfibrillated cellulose, having a dry content of from 0.2 to 2.0%, wherein the first suspension has a first Schopper-Riegler (SR) value; forming a first web of said suspension; at least partly dewatering said first web; applying a second suspension comprising microfibrillated cellulose, and/or fines and/or fibers onto a surface of said formed and at least partially dried first web, wherein the second suspension has a second Schopper-Riegler value which is higher than said first Schopper-Riegler value, thereby forming a film.
Abstract:
The invention relates to a process for treating cellulose fibres which process comprises the steps of providing a slurry comprising cellulose fibers, adding anionic polyacrylamide (A-PAM) with high molar mass to the slurry in a first step and subjecting the slurry comprising fibers and A-PAM to a mechanical treatment in a second step thereby forming a composition comprising microfibrillated cellulose. The invention further relates to a composition produced according to the process.