摘要:
A connector and method of crosstalk compensation within a connector is disclosed. The method includes determining an uncompensated crosstalk, including an uncompensated capacitive crosstalk and an uncompensated inductive crosstalk, of a wired pair in a connector. The uncompensated crosstalk includes common mode and differential mode crosstalk. The method includes applying at least one inductive element to the wired pair, where the at least one inductive element is configured and arranged to provide balanced compensation for the inductive crosstalk caused by the one or more pairs. The method further includes applying at least one capacitive element to the wired pair, where the at least one capacitive element is configured and arranged to provide balanced compensation for the capacitive crosstalk caused by the one or more wired pairs.
摘要:
A connector and method of crosstalk compensation within a connector is disclosed. The method includes determining an uncompensated crosstalk, including an uncompensated capacitive crosstalk and an uncompensated inductive crosstalk, of a wired pair in a connector. The uncompensated crosstalk includes common mode and differential mode crosstalk. The method includes applying at least one inductive element to the wired pair, where the at least one inductive element is configured and arranged to provide balanced compensation for the inductive crosstalk caused by the one or more pairs. The method further includes applying at least one capacitive element to the wired pair, where the at least one capacitive element is configured and arranged to provide balanced compensation for the capacitive crosstalk caused by the one or more wired pairs.
摘要:
A connector and method of crosstalk compensation within a connector is disclosed. The method includes determining an uncompensated crosstalk, including an uncompensated capacitive crosstalk and an uncompensated inductive crosstalk, of a wired pair in a connector. The uncompensated crosstalk includes common mode and differential mode crosstalk. The method includes applying at least one inductive element to the wired pair, where the at least one inductive element is configured and arranged to provide balanced compensation for the inductive crosstalk caused by the one or more pairs. The method further includes applying at least one capacitive element to the wired pair, where the at least one capacitive element is configured and arranged to provide balanced compensation for the capacitive crosstalk caused by the one or more wired pairs.
摘要:
A connector and method of crosstalk compensation within a connector is disclosed. The method includes determining an uncompensated crosstalk, including an uncompensated capacitive crosstalk and an uncompensated inductive crosstalk, of a wired pair in a connector. The uncompensated crosstalk includes common mode and differential mode crosstalk. The method includes applying at least one inductive element to the wired pair, where the at least one inductive element is configured and arranged to provide balanced compensation for the inductive crosstalk caused by the one or more pairs. The method further includes applying at least one capacitive element to the wired pair, where the at least one capacitive element is configured and arranged to provide balanced compensation for the capacitive crosstalk caused by the one or more wired pairs.
摘要:
A connector and method of crosstalk compensation within a connector is disclosed. The method includes determining an uncompensated crosstalk, including an uncompensated capacitive crosstalk and an uncompensated inductive crosstalk, of a wired pair in a connector. The uncompensated crosstalk includes common mode and differential mode crosstalk. The method includes applying at least one inductive element to the wired pair, where the at least one inductive element is configured and arranged to provide balanced compensation for the inductive crosstalk caused by the one or more pairs. The method further includes applying at least one capacitive element to the wired pair, where the at least one capacitive element is configured and arranged to provide balanced compensation for the capacitive crosstalk caused by the one or more wired pairs.
摘要:
A connector and method of crosstalk compensation within a connector is disclosed. The method includes determining an uncompensated crosstalk, including an uncompensated capacitive crosstalk and an uncompensated inductive crosstalk, of a wired pair in a connector. The uncompensated crosstalk includes common mode and differential mode crosstalk. The method includes applying at least one inductive element to the wired pair, where the at least one inductive element is configured and arranged to provide balanced compensation for the inductive crosstalk caused by the one or more pairs. The method further includes applying at least one capacitive element to the wired pair, where the at least one capacitive element is configured and arranged to provide balanced compensation for the capacitive crosstalk caused by the one or more wired pairs.
摘要:
A connector and method of crosstalk compensation within a connector is disclosed. The method includes determining an uncompensated crosstalk, including an uncompensated capacitive crosstalk and an uncompensated inductive crosstalk, of a wired pair in a connector. The uncompensated crosstalk includes common mode and differential mode crosstalk. The method includes applying at least one inductive element to the wired pair, where the at least one inductive element is configured and arranged to provide balanced compensation for the inductive crosstalk caused by the one or more pairs. The method further includes applying at least one capacitive element to the wired pair, where the at least one capacitive element is configured and arranged to provide balanced compensation for the capacitive crosstalk caused by the one or more wired pairs.
摘要:
The present disclosure relates to a telecommunications jack including a housing having a port for receiving a plug. The jack also includes a plurality of contact springs adapted to make electrical contact with the plug when the plug is inserted into the port of the housing, and a plurality of wire termination contacts for terminating wires to the jack. The jack further includes a circuit board that electrically connects the contact springs to the wire termination contacts. The circuit board includes first and second conductive layers separated by a relatively thin dielectric layer. The first and second conductive layers include a crosstalk compensation arrangement having spaced-apart capacitor members. The relatively thin dielectric layer allows a high level of capacitance to be generated between the capacitor members.
摘要:
The present disclosure relates to a telecommunications jack including a housing having a port for receiving a plug. The jack also includes a plurality of contact springs adapted to make electrical contact with the plug when the plug is inserted into the port of the housing, and a plurality of wire termination contacts for terminating wires to the jack. The jack further includes a circuit board that electrically connects the contact springs to the wire termination contacts. The circuit board includes a multi-zone crosstalk compensation arrangement for reducing crosstalk at the jack.
摘要:
Methods and systems for compensating for crosstalk in a telecommunications jack are disclosed. One method includes manufacturing a circuit board having a zone of crosstalk compensation between a first wire pair and a second wire pair, the zone of crosstalk compensation including a capacitive coupling connected between the first wire pair and the second wire pair and a second capacitive coupling selectively connectable in parallel with the capacitive coupling. The method further includes determining a crosstalk value generated by the jack including the manufactured circuit board. The method also includes, upon determining that the crosstalk value is outside of a crosstalk pass band, adjusting the zone of crosstalk compensation by altering an electrical connection between the second capacitive coupling and the capacitive coupling after the circuit board has been manufactured.