Abstract:
A programmable circuit includes an array of printed groups of microscopic transistors or diodes having pn junctions. The devices are pre-formed and printed as an ink and cured. The devices have a proper orientation and a reverse orientation after settling on a conductor layer. The devices are connected in parallel within small groups. To neutralize the reverse-oriented devices, a sufficient voltage is applied across the parallel-connected diodes to forward bias only the devices having the reverse orientation. This causes a sufficient current to flow through each of the reverse-orientated devices to destroy an electrical interface between an electrode of the devices and the conductor layer to create an open circuit, such that those devices do not affect a rectifying function of the devices in the group having the proper orientation. An interconnection conductor pattern may then interconnect the groups to form complex logic circuits.
Abstract:
A semiconductor device includes a board, an electronic component, an evaluation component, a wiring, and a groove portion. The board includes a product area, a non-product area, and a boundary area between the product area and the non-product area. The electronic component is mounted in the product area. The evaluation component is mounted in the non-product area. The wiring electrically connects the electronic component and the evaluation component. The groove portion is formed in the boundary area of the board so as to overlap at least a part of the wiring in a plan view. The non-product area is surrounded by the groove portion and at least a portion of sides of the board.
Abstract:
A capacitor bank comprising at least two series chains each comprising a plurality of capacitors, wherein the series chains are coupled in parallel at corresponding points; and a fusible link arranged to form at least part of each coupling; wherein the corresponding points of each chain that are coupled to one another are at the same voltage when the capacitor bank is operational.
Abstract:
A method for fabricating a conductive trace structure includes the steps: forming a first metal layer on a non-conductive substrate; removing a part of the first metal layer to expose the non-conductive substrate so as to form the first metal layer into a plating region and a non-plating region, the plating region being divided into at least two trace-forming portions and at least one bridge portion; forming a second metal layer on the plating region by electroplating the plating region using one of the trace-forming portions and the bridge portion as an electrode; and removing the bridge portion and the second metal layer formed on the bridge portion.
Abstract:
A substrate includes a first pattern on which terminals are formed; a second pattern on which terminals are formed; and a third pattern on which terminals are formed. A distance between a first pair of terminals which are configured by one terminal of the first pattern and one terminal of the second pattern is equal to a distance between a second pair of terminals which are configured by another terminal of the first pattern and one terminal of the third pattern, and a distance between a third pair of terminals which are configured by another of the terminals of the third pattern and another of the terminals of the second pattern is equal to a distance between a fourth pair of terminals which are configured by the other of the terminal of the third pattern and the other of the terminal of the first pattern.
Abstract:
The invention provides transient devices, including active and passive devices that physically, chemically and/or electrically transform upon application of at least one internal and/or external stimulus. Incorporation of degradable device components, degradable substrates and/or degradable encapsulating materials each having a programmable, controllable and/or selectable degradation rate provides a means of transforming the device. In some embodiments, for example, transient devices of the invention combine degradable high performance single crystalline inorganic materials with selectively removable substrates and/or encapsulants.
Abstract:
A substrate package includes a woven fabric having electrically non-conductive strands woven between electrically conductive strands including wire strands, co-axial strands, and/or an inductor pattern of strands. The package may be formed by an inexpensive and high throughput process that first weaves the non-conductive strands (e.g., glass) between the conductive strands to form a circuit board pattern of conductive strands in a woven fabric. Next, the woven fabric is impregnated with a resin material to form an impregnated fabric, which is then cured to form a cured fabric. The upper and lower surfaces of the cured fabric are subsequently planarized. Planarizing segments and exposes ends of the wire, co-axial, and inductor pattern strands. Since the conductive strands were formed integrally within the planarized woven fabric, the substrate has a high mechanical stability and provides conductor strand based electrical components built in situ in the substrate package.
Abstract:
A method for processing a PCBa panel to individualize the PCBa's on the PCBa panel and depanel the PCBa panel in substantially one step is described. The PCBa panel initially comprises a number of PCBa's having components and traces common to a number of different product SKUs. During processing, the PCBa panel is loaded into a machine containing a first and second laser. The first laser severs extra traces on each PCBa to individualize the PCBa's for specific SKUs and the second laser cuts the links between each PCBa, thereby depaneling the PCBa panel.
Abstract:
An integrated circuit package includes a packaging substrate with an electrical connection pad formed thereon and an integrated circuit die coupled to the electrical connection pad. The electrical connection pad includes an electroplated surface finish layer, but does not include an electrical trace configured as a plating tail. Because the electrical connection pad is free of a plating tail, signal degradation caused by the presence of plating tails in the integrated circuit package is avoided.
Abstract:
Provided is a metal core board which has a preferable function for a vehicle-mountable junction box, specifically, is reduced in size or improved in mounting efficiency. A metal core board for a vehicle-mountable junction box, which is mountable on the vehicle-mountable junction box, wherein a core plate forming an intermediate layer of the metal core board has a plurality of slits and an island surrounded by separating connection parts present between the slits; and in the state where the island is held between insulating layers stacked on both of two surfaces of the core plate, through-bores 46 are formed at the separating connection parts to remove the separating connection parts and the island is made electrically independent from a remaining part of the core plate while being held between the insulating layers. Thus, a plurality of circuits can be formed.