摘要:
A CMOS charge pump with improved latch-up immunity is provided. The CMOS charge pump includes a blocking transistor that disconnects first and second boost nodes from a bulk node in response to a blocking control signal, such that a bulk voltage can be maintained at a predetermined level or higher. The CMOS charge pump in a power-up period first precharges the bulk voltage before the main pump performs a boosting operation and prevents a latch-up phenomenon.
摘要:
A CMOS charge pump with improved latch-up immunity is provided. The CMOS charge pump includes a blocking transistor that disconnects first and second boost nodes from a bulk node in response to a blocking control signal, such that a bulk voltage can be maintained at a predetermined level or higher. The CMOS charge pump in a power-up period first precharges the bulk voltage before the main pump performs a boosting operation and prevents a latch-up phenomenon.
摘要:
A charge pump circuit includes initialization units, each of which initializes a boost node to an initialization voltage. Boosting units each boost the boost node to a higher voltage than the initialization voltage in response to an input voltage. First and second pump circuits each include a transfer unit for transferring a voltage of the boost node to an output node and sharing the output node. The transfer unit of the first pump circuit includes two transfer transistors that are switched in response to a voltage of a control node of the first pump circuit and the voltage of the boost node of the second pump circuit. The transfer unit of the second pump circuit includes two transfer transistors that are switched in response to a voltage of a control node of the second pump circuit and the voltage of the boost node of the first pump circuit.
摘要:
A charge pump circuit includes initialization units, each of which initializes a boost node to an initialization voltage. Boosting units each boost the boost node to a higher voltage than the initialization voltage in response to an input voltage. First and second pump circuits each include a transfer unit for transferring a voltage of the boost node to an output node and sharing the output node. The transfer unit of the first pump circuit includes two transfer transistors that are switched in response to a voltage of a control node of the first pump circuit and the voltage of the boost node of the second pump circuit. The transfer unit of the second pump circuit includes two transfer transistors that are switched in response to a voltage of a control node of the second pump circuit and the voltage of the boost node of the first pump circuit.
摘要:
A memory system includes a memory controller and a memory device. The memory device exchanges data through a first channel with the memory controller, exchanges a first cyclic redundancy check (CRC) code associated with the data through a second channel with the memory controller, and receives a command/address packet including a second CRC code associated with a command/address from the memory controller through a third channel.
摘要:
A voltage generation circuit and semiconductor memory device including the same are provided. The voltage generation circuit includes: a voltage level detector, which detects a level of a first high voltage to generate a first high voltage level detection signal and detects a level of a second high voltage to generate a second high voltage level detection signal; a control signal generator, which generates at least four pumping control signals in sequence when the first high voltage level detection signal is active, generates a control signal when the first high voltage level detection signal is inactive, and generates a first one of the at least four pumping control signals in response to a level of a power supply voltage; and a voltage generator, which pumps a boost node in response to the at least four pumping control signals to generate the first high voltage and transmits charge from the boost node to a second high voltage generation terminal in response to the control signal to generate the second high voltage.
摘要:
A method of finding errors in a content addressable memory (CAM) and a CAM cell array, the CAM being capable of finding errors in the CAM cell array, is disclosed. The CAM includes the CAM cell array having a plurality of CAM cells and a match line state storing unit. The match line state storing unit is connected to a word line and a match line of the plurality of CAM cells and has a plurality of state cells in which a logic level of stored data is changed according to a logic level of the match line. Errors in the CAM cell array are found by reading data stored in the plurality of state cells. The data stored in the plurality of state cells are matched when there are no errors in the CAM cell array.
摘要:
An integrated circuit device disclosed herein includes a test device and a setup and hold measuring circuit. The setup and hold measuring circuit generates a reference signal and a data signal in response to an external clock signal in a test mode of operation. The test device receives the data signal in response to a reference signal, and outputs the inputted data signal as a setup and hold determining circuit. One of the reference signal and the data signal is a multiphase signal synchronized with the external clock signal. The setup and hold measuring circuit detects whether the output of the test device indicates a valid value of the data signal, and generates the detected result to the external as a setup/hold timing margin through at least one pad.
摘要:
A negative delay circuit (NDC) has an NDC array operated in a high frequency. The circuit varies a number of unit delay stages at an input stage of the NDC array according to a locking fail signal in a low frequency region. The NDC can carry out a negative delay operation in a wide band even when a number of the stages in the NDC array is small. The present invention decreases a size of a chip, and in addition, reduces an unnecessary current consumption by preventing a locking from re-occurring at a stage in a back portion because the NDC array has a delay value less than one clock.
摘要:
A bit line sense amplifier overdriving method includes a step for reaching a bit line data signal to a full swing level by driving the sense amplifiers in accordance with an overdriving voltage in an overdriving pulse interval, when an overdriving pulse signal is generated at points in which the sense amplifiers are enabled and disabled in a data read operation and a data write operation. The method maintains a sufficiently long refresh interval during a refresh operation.