摘要:
This invention relates to a nonwoven fabric having a first component of from 5% to 99% by weight based on the total weight of the composition wherein the first component is selected from the group consisting of homopolymers of propylene and random copolymers of propylene, the first component having a heat of fusion as determined by DSC of less than 50 J/g and stereoregular propylene crystallinity; and a second component having from 95% to 1% by weight based on the total weight of the composition of a propylene polymer or blends of propylene polymers; wherein the nonwoven fabric has a permanent set of less than 60%.
摘要:
The present invention also discloses a homogeneous blend composition comprising; a) from 1% to 99% by weight of the blend of a first polymer component comprising a copolymer of 5% to 35% by weight of the first polymer component consisting predominantly of alpha olefin derived units and 65% to 95% by weight of the first polymer component of propylene derived units having a crystallinity of 0.1% to about 25% from isotactic polypropylene sequences, a melting point of from 45° C. to 105° C., and wherein the Melt Flow Rate (MFR @ 230° C.) of the first polymer component is between 300 g/10 min to 5000 g/10 min. b) from 1% to 99% by weight of the blend of a second polymer component comprising isotactic polypropylene and random copolymers of isotactic propylene, wherein the percentage of the copolymerized alpha-olefin in the copolymer is between 0.0% and 9% by weight of the second polymer component and wherein the second polymer component has a melting point greater than about 110° C., wherein the first polymer component has less than 1000 ppm of reaction products arising from the chemical reaction of a molecular degradation agent.
摘要:
The present invention also discloses a homogeneous blend composition comprising; a) from 1% to 99% by weight of the blend of a first polymer component comprising a copolymer of 5% to 35% by weight of the first polymer component consisting predominantly of alpha olefin derived units and 65% to 95% by weight of the first polymer component of propylene derived units having a crystallinity of 0.1% to about 25% from isotactic polypropylene sequences, a melting point of from 45° C. to 105° C., and wherein the Melt Flow Rate (MFR @ 230° C.) of the first polymer component is between 300 g/10 min to 5000 g/10 min. b) from 1% to 99% by weight of the blend of a second polymer component comprising isotactic polypropylene and random copolymers of isotactic propylene, wherein the percentage of the copolymerized alpha-olefin in the copolymer is between 0.0% and 9% by weight of the second polymer component and wherein the second polymer component has a melting point greater than about 110° C., wherein the first polymer component has less than 1000 ppm of reaction products arising from the chemical reaction of a molecular degradation agent.
摘要:
The present invention also discloses a heterogeneous blend composition comprising; a) from 1% to 99% by weight of the blend of a first polymer component comprising a copolymer of 5% to 35% by weight of the first polymer component consisting predominantly of alpha olefin derived units and 65% to 95% by weight of the first polymer component of propylene derived units having a crystallinity of 0.1% to about 25% from isotactic polypropylene sequences, a melting point of from 45° C. to 105° C., and wherein the Melt Flow Rate (MFR@230° C.) of the first polymer component is between 300 g/10 min to 5000 g/10 min b) from 1% to 99% by weight of the blend of a second polymer component comprising isotactic polypropylene and random copolymers of isotactic propylene, wherein the percentage of the copolymerized alpha-olefin in the copolymer is between 0.0% and 9% by weight of the second polymer component and wherein the second polymer component has a melting point greater than about 110° C., wherein the first polymer component has less than 1000 ppm of reaction products arising from the chemical reaction of a molecular degradation agent.
摘要:
The present invention also discloses a heterogeneous blend composition comprising; a) from 1% to 99% by weight of the blend of a first polymer component comprising a copolymer of 5% to 35% by weight of the first polymer component consisting predominantly of alpha olefin derived units and 65% to 95% by weight of the first polymer component of propylene derived units having a crystallinity of 0.1% to about 25% from isotactic polypropylene sequences, a melting point of from 45° C. to 105° C., and wherein the Melt Flow Rate (MFR@230° C.) of the first polymer component is between 300 g/10 min to 5000 g/10 min b) from 1% to 99% by weight of the blend of a second polymer component comprising isotactic polypropylene and random copolymers of isotactic propylene, wherein the percentage of the copolymerized alpha-olefin in the copolymer is between 0.0% and 9% by weight of the second polymer component and wherein the second polymer component has a melting point greater than about 110° C., wherein the first polymer component has less than 1000 ppm of reaction products arising from the chemical reaction of a molecular degradation agent.
摘要:
A layered microporous polymeric membrane includes a first blend region having a thickness T1, a third blend region having a thickness T3, and a second blend region located between the first and third blend regions and having a thickness T2, wherein [(T1−T2)/T1]≧0.05 and [(T3−T2)/T3]≧0.05.
摘要:
Embodiments of the present invention generally relate to microporous membrane, methods for making microporous membrane, and the use of microporous membrane as battery separator film. More particularly, the invention relates to a microporous polymeric membrane including a paraxylylene polymer or copolymer, particularly in combination with a polymeric microporous membrane. The paraxylylene polymer or copolymer can be formed on or laminated to the microporous polymeric membrane.
摘要:
Embodiments of the present invention generally relate to microporous membrane, methods for making microporous membrane, and the use of microporous membrane as battery separator film. More particularly, the invention relates to a microporous polymeric membrane including a paraxylylene polymer or copolymer, particularly in combination with a polymeric microporous membrane. The paraxylylene polymer or copolymer can be formed on or laminated to the microporous polymeric membrane.