摘要:
A method of preparing a metal catalyst including a conductive catalyst material and a coating layer formed of a water repellent material on the surface of the conductive catalyst material includes: obtaining a water repellent material solution by mixing a water repellent material and a first solvent; obtaining a conductive catalyst solution by mixing a conductive catalyst material and a first solvent; mixing the water repellent material solution and the conductive catalyst solution; casting the result onto a supporter, drying the cast result and then separating a metal catalyst in a solid state from the supporter; and pulverizing and sieving the product. Also provided is a method of preparing an electrode including the metal catalyst.
摘要:
A metal catalyst including a conductive catalyst material and a coating layer formed of a water repellent material on the conductive catalyst material, an electrode including the metal catalyst, and a fuel cell employing the electrode. By forming the coating layer, having a water repellent material, on the conductive catalyst material, the metal catalyst does not sink in the liquid electrolyte, the distribution and movement of the liquid electrolyte around the metal catalyst can be controlled, and the thickness of the interface between the metal catalyst and the liquid electrolyte can be regulated. Accordingly, an ideal electrode structure having triple phase boundary for electrochemical reaction can be formed. A fuel cell employing an electrode including the metal catalyst has excellent efficiency and overall performance.
摘要:
A metal catalyst including a conductive catalyst material and a coating layer formed of a water repellent material on the conductive catalyst material, an electrode including the metal catalyst, and a fuel cell employing the electrode. By forming the coating layer, having a water repellent material, on the conductive catalyst material, the metal catalyst does not sink in the liquid electrolyte, the distribution and movement of the liquid electrolyte around the metal catalyst can be controlled, and the thickness of the interface between the metal catalyst and the liquid electrolyte can be regulated. Accordingly, an ideal electrode structure having triple phase boundary for electrochemical reaction can be formed. A fuel cell employing an electrode including the metal catalyst has excellent efficiency and overall performance.
摘要:
An oxygen reduction electrode and a fuel cell including the same are provided. A catalyst layer of the oxygen reduction electrode includes a metalloporphyrin derivative as an additive. Accordingly, the oxygen reduction electrode can increase oxygen concentration and can easily form a triple phase boundary by reducing a flooding phenomenon caused by an electrolyte. A fuel cell including the same is also provided.
摘要:
An oxygen reduction electrode and a fuel cell including the same are provided. A catalyst layer of the oxygen reduction electrode includes a metalloporphyrin derivative as an additive. Accordingly, the oxygen reduction electrode can increase oxygen concentration and can easily form a triple phase boundary by reducing a flooding phenomenon caused by an electrolyte. A fuel cell including the same is also provided.
摘要:
A method of preparing a metal catalyst including a conductive catalyst material and a coating layer formed of a water repellent material on the surface of the conductive catalyst material includes: obtaining a water repellent material solution by mixing a water repellent material and a first solvent; obtaining a conductive catalyst solution by mixing a conductive catalyst material and a first solvent; mixing the water repellent material solution and the conductive catalyst solution; casting the result onto a supporter, drying the cast result and then separating a metal catalyst in a solid state from the supporter; and pulverizing and sieving the product. Also provided are a metal catalyst prepared using the method, an electrode including the metal catalyst, a method of preparing the electrode, and a fuel cell employing the electrode. A metal catalyst including a coating layer formed of a water repellent material on the surface of a conductive catalyst particle can be obtained by using the method of preparing a metal catalyst. Such a metal catalyst does not sink into a liquid electrolyte since hydrophobicity is efficiently distributed around the conductive catalyst particle. Also, the distribution and movement of the liquid electrolyte, such as phosphoric acid, around the metal catalyst can be controlled. A fuel cell employing the metal catalyst has excellent efficiency and overall performance.
摘要:
A method for preparing a metal catalyst includes a proton conductive material coating layer formed on the surface of a conductive material. Also, an electrode may be prepared using the metal catalyst. The method for preparing the metal catalyst comprises mixing the conductive catalyst material, the proton conductive material, and a first solvent, casting the mixture onto a supporting layer and drying the mixture to form a conductive catalyst containing film. The method further comprises separating the conductive catalyst containing film from the supporting layer and pulverizing the conductive catalyst containing film to obtain the metal catalyst. The method for preparing the electrode comprises mixing the metal catalyst with a hydrophobic binder and a second solvent, coating the mixture on an electrode support, and drying it.
摘要:
Provided are an additive to an electrode for a fuel cell that is a proton conductive compound having at least one phosphate group, an electrode for a fuel cell including the same, a method of manufacturing the electrode for a fuel cell, and a fuel cell using the electrode. The additive to an electrode for a fuel cell improves the durability of a fuel cell and reduces the amount of phosphoric acid discharged during operation of the fuel cell by fixing the phosphoric acid. Accordingly, a fuel cell having improved efficiency may be prepared using the additive because of improved proton conductivity and durability.
摘要:
A method for preparing a metal catalyst includes a proton conductive material coating layer formed on the surface of a conductive material. Also, an electrode may be prepared using the metal catalyst. The method for preparing the metal catalyst comprises mixing the conductive catalyst material, the proton conductive material, and a first solvent, casting the mixture onto a supporting layer and drying the mixture to form a conductive catalyst containing film. The method further comprises separating the conductive catalyst containing film from the supporting layer and pulverizing the conductive catalyst containing film to obtain the metal catalyst. The method for preparing the electrode comprises mixing the metal catalyst with a hydrophobic binder and a second solvent, coating the mixture on an electrode support, and drying it.
摘要:
A membrane electrode assembly for a fuel cell and a fuel cell employing the same. The membrane electrode assembly includes: a cathode; an anode; and a polymer electrolyte membrane that is interposed between the cathode and the anode, and comprises a proton conductive polymer that is doped with acid to a doping level of less than 200 mole %. The membrane electrode assembly for the fuel cell exhibits an improved efficiency of performance when acid is doped in the polymer electrolyte membrane at a doping level of less than 200 mole. In addition, the performance of the fuel cell can be optimized by separately adjusting the amount of acid doped in the cathode and anode. The fuel cell employing the membrane electrode assembly can be operated at a high temperature in a dry environment and exhibits an improved power generating performance.