Abstract:
Processes for the treatment of silicon wafers to form a high density non-uniform distribution of oxygen precipitate nuclei therein such that, upon being subjected to the heat treatment cycles of essentially any arbitrary electronic device manufacturing process, the wafers form oxygen precipitates in the bulk and a precipitate-free zone near the surface are disclosed. The processes involve activation of inactive oxygen precipitate nuclei by performing heat treatments between about 400° C. and about 600° C. for at least about 1 hour.
Abstract:
Processes for suppressing minority carrier lifetime degradation in silicon wafers are disclosed. The processes involve quench cooling the wafers to increase the density of nano-precipitates in the silicon wafers and the rate at which interstitial atoms are consumed by the nano-precipitates.
Abstract:
Apparatus and processes for preparing heterostructures with reduced strain are disclosed. The heterostructures may include a semiconductor structure that conforms to a surface layer having a different crystal lattice constant than the structure to form a relatively low-defect heterostructure.
Abstract:
Apparatus for use in preparing heterostructures having a reduced concentration of defects including apparatus for stressing semiconductor substrates to allow them to conform to a crystal having a different crystal lattice constant.
Abstract:
Apparatus and processes for preparing heterostructures with reduced strain are disclosed. The heterostructures may include a semiconductor structure that conforms to a surface layer having a different crystal lattice constant than the structure to form a relatively low-defect heterostructure.
Abstract:
Processes for suppressing minority carrier lifetime degradation in silicon wafers are disclosed. The processes involve quench cooling the wafers to increase the density of nano-precipitates in the silicon wafers and the rate at which interstitial atoms are consumed by the nano-precipitates.