Abstract:
A reverse biasing logic circuit is disclosed for limiting standby leakage electric current losses during circuit operation. The circuit includes a logic function circuit having one or more logic transistors that receive an input and perform a logic function operation to generate an output. A power source transistor connects to the logic function circuit and receives a control signal that changes node voltages of the one or more logic transistors between an active mode and a standby mode. During the standby mode, the power source transistor causes reverse biasing of at least one of the one or more logic transistors which prevents a leakage electric current flow between the power source transistor and the one or more logic transistors.
Abstract:
Methods and circuits are described for reducing power consumption within digital logic circuits by blocking the passage of clock signal transitions to the logic circuits when the clock signal would not produce a desired change of state within the logic circuit, such as at inputs, intermediary nodes, outputs, or combinations. By way of example, the incoming clock is blocked if a given set of logic inputs will not result in an output change of state if a clock signal transition were to be received. By way of further example, the incoming clock is blocked in a data flip-flop if the input signal matches the output signal, such that receipt of a clock transition would not produce a desired change of state in the latched output. The invention may be utilized for creating lower power combinatorial and/or sequential logic circuit stages subject to less unproductive charging and discharging of gate capacitances.
Abstract:
An integrated circuit is provided which includes a multi-state circuit with a first PMOS transistor and a first NMOS transistor. In an active mode, the multi-state circuit is operable to switch between a first state in which the first PMOS transistor is turned on and the first NMOS transistor is turned off and a second state in which the first PMOS transistor is turned off and the first NMOS transistor is turned on. A power source NMOS transistor has a drain connected to a supply voltage terminal and has a source connected to a source of the first PMOS transistor. A power source PMOS transistor has a drain connected to a an effective ground terminal and has a source connected to a source of the first NMOS transistor.
Abstract:
An integrated circuit is provided which includes a multi-state circuit with a first PMOS transistor and a first NMOS transistor. In an active mode, the multi-state circuit is operable to switch between a first state in which the first PMOS transistor is turned on and the first NMOS transistor is turned off and a second state in which the first PMOS transistor is turned off and the first NMOS transistor is turned on. A power source NMOS transistor has a drain connected to a supply voltage terminal and has a source connected to a source of the first PMOS transistor. A power source PMOS transistor has a drain connected to a an effective ground terminal and has a source connected to a source of the first NMOS transistor.
Abstract:
An integrated circuit is provided which includes a multi-state circuit with a first PMOS transistor and a first NMOS transistor. In an active mode, the multi-state circuit is operable to switch between a first state in which the first PMOS transistor is turned on and the first NMOS transistor is turned off and a second state in which the first PMOS transistor is turned off and the first NMOS transistor is turned on. A power source NMOS transistor has a drain connected to a supply voltage terminal and has a source connected to a source of the first PMOS transistor. A power source PMOS transistor has a drain connected to a an effective ground terminal and has a source connected to a source of the first NMOS transistor.
Abstract:
An integrated circuit is provided comprising a latch circuit including, a first inverter including a first high threshold voltage PMOS transistor and a first high threshold voltage NMOS transistor with a first data node comprising interconnected source/drains (S/D) of the first PMOS and NMOS transistors; a second inverter including a second high threshold voltage PMOS transistor and a second high threshold voltage NMOS transistor with a second data node comprising interconnected source/drains (S/D) of the second PMOS and NMOS transistors; wherein the gates of the first PMOS and first NMOS transistors are coupled to the second data node; wherein the gates of the second PMOS and second NMOS transistors are coupled to the first data node; a first low threshold voltage access transistor including a first S/D coupled to the first data node and to the gate of the second PMOS transistor and to the gate of the second NMOS transistor and including a second S/D coupled to a first data access node and including a gate coupled to a first access control node; and a second low threshold voltage access transistor including a first S/D coupled to the second data node and to the gate of the first PMOS transistor and to the gate of the first NMOS transistor and including a second S/D coupled to a second data access node and including a gate coupled to a second access control node.
Abstract:
An integrated circuit is provided comprising a latch circuit including, a first inverter including a first high threshold voltage PMOS transistor and a first high threshold voltage NMOS transistor with a first data node comprising interconnected source/drains (S/D) of the first PMOS and NMOS transistors; a second inverter including a second high threshold voltage PMOS transistor and a second high threshold voltage NMOS transistor with a second data node comprising interconnected source/drains (S/D) of the second PMOS and NMOS transistors; wherein the gates of the first PMOS and first NMOS transistors are coupled to the second data node; wherein the gates of the second PMOS and second NMOS transistors are coupled to the first data node; a first low threshold voltage access transistor including a first S/D coupled to the first data node and to the gate of the second PMOS transistor and to the gate of the second NMOS transistor and including a second S/D coupled to a first data access node and including a gate coupled to a first access control node; and a second low threshold voltage access transistor including a first S/D coupled to the second data node and to the gate of the first PMOS transistor and to the gate of the first NMOS transistor and including a second S/D coupled to a second data access node and including a gate coupled to a second access control node.
Abstract:
An integrated circuit is provided which includes a multi-state circuit with a first PMOS transistor and a first NMOS transistor. In an active mode, the multi-state circuit is operable to switch between a first state in which the first PMOS transistor is turned on and the first NMOS transistor is turned off and a second state in which the first PMOS transistor is turned off and the first NMOS transistor is turned on. A power source NMOS transistor has a drain connected to a supply voltage terminal and has a source connected to a source of the first PMOS transistor. A power source PMOS transistor has a drain connected to a an effective ground terminal and has a source connected to a source of the first NMOS transistor.
Abstract:
An integrated circuit is provided comprising a first NMOS transistor; a first PMOS transistor; a second NMOS transistor; a second PMOS transistor; a first bias voltage node coupled to a first source/drain of the first NMOS transistor; a second bias voltage node coupled to a first source/drain of the second PMOS; a third bias voltage node coupled to a gate of the first PMOS transistor; a fourth bias voltage node coupled to a gate of the second NMOS transistor; a pull-up node coupling a second source/drain of the first NMOS transistor to a first source/drain of the first PMOS transistor; a pull-down node coupling a second source/drain of the second PMOS transistor to a first source/drain of the second NMOS transistor; an input node; a storage node coupling a second source/drain of the first PMOS transistor to a second source/drain of the second NMOS transistor; an output node; an input switch coupled to controllably communicate an input data value from the input node to a gate of the first NMOS transistor and to a gate of the second PMOS transistor; and an output switch coupled to controllably communicate a stored data value from the storage node to the output node.
Abstract:
An integrated circuit is provided comprising a first NMOS transistor; a first PMOS transistor; a second NMOS transistor; a second PMOS transistor; a first bias voltage node coupled to a first source/drain of the first NMOS transistor; a second bias voltage node coupled to a first source/drain of the second PMOS; a third bias voltage node coupled to a gate of the first PMOS transistor; a fourth bias voltage node coupled to a gate of the second NMOS transistor; a pull-up node coupling a second source/drain of the first NMOS transistor to a first source/drain of the first PMOS transistor; a pull-down node coupling a second source/drain of the second PMOS transistor to a first source/drain of the second NMOS transistor; an input node; a storage node coupling a second source/drain of the first PMOS transistor to a second source/drain of the second NMOS transistor; an output node; an input switch coupled to controllably communicate an input data value from the input node to a gate of the first NMOS transistor and to a gate of the second PMOS transistor; and an output switch coupled to controllably communicate a stored data value from the storage node to the output node.