摘要:
Photodarkening in active fiber or waveguide devices (e.g. lasers, amplifiers, and incoherent sources such as ASE sources) can be reduced by altering the dopant concentration along the length of the doped fiber. A fiber or waveguide device includes two or more intentionally doped fiber or waveguide sections having different concentrations of one or more dopants. The dopants provide optical gain responsive to pump radiation provided to the fiber device by a pump source. A first optical intensity in a first of the fiber or waveguide sections is greater than a second optical intensity in a second of the fiber or waveguide sections. A first dopant concentration in the first fiber or waveguide section is lower than a second dopant concentration in the second fiber or waveguide section. Thus the dopant concentration is reduced in sections of the fiber or waveguide device having a higher optical intensity. The optical intensity can be due to pump radiation and/or signal radiation. Reduced dopant concentration in regions of high optical intensity reduces photodarkening.
摘要:
A method utilizes an optical image processing system. The method includes calculating a product of (i) a measured magnitude of a Fourier transform of a complex transmission function of an object or optical image and (ii) an estimated phase term of the Fourier transform of the complex transmission function. The method further includes calculating an inverse Fourier transform of the product, wherein the inverse Fourier transform is a spatial function. The method further includes calculating an estimated complex transmission function by applying at least one constraint to the inverse Fourier transform.
摘要:
An optical structure on an optical fiber and a method of fabrication is provided. The optical structure includes an end of an optical fiber and a layer formed on the end of the optical fiber. The layer comprises one or more first portions having a first optical pathlength in a direction perpendicular to the layer and one or more second portions having a second optical pathlength in the direction perpendicular to the layer, the second optical pathlength different from the first optical pathlength.
摘要:
An optical sensor includes at least a portion of an optical waveguide having a hollow core generally surrounded by a cladding. The cladding substantially confines a first optical signal and a second optical signal within the hollow core as the first optical signal and the second optical signal counterpropagate through the optical waveguide. Interference between the first optical signal and the second optical signal is responsive to perturbation of the at least a portion of the optical waveguide.
摘要:
An apparatus is provided for measuring a frequency-domain optical coherence tomography power spectrum from a sample. The apparatus includes a partially reflective element configured to be optically coupled to a light source and to the sample. A first portion of light from the light source is configured to be reflected by the partially reflective element. A second portion of light from the light source is configured to propagate through the partially reflective element, to impinge the sample, and to reflect from the sample. The apparatus is configured to receive the first and second portions of light and to measure the frequency-domain optical coherence tomography power spectrum in response to the first portion of light and the second portion of light.
摘要:
An acoustic sensor includes at least one structure including at least one photonic crystal slab and an optical fiber optically coupled to the at least one photonic crystal slab, and having at least one optical resonance with a resonance frequency and a resonance lineshape. The acoustic sensor further includes a housing mechanically coupled to the at least one structure. At least one of the resonance frequency and the resonance lineshape is responsive to acoustic waves incident upon the housing.
摘要:
An optical filter and methods of filtering are provided. The optical filter includes a hollow-core fiber including a first portion and a second portion. The first portion includes a hollow core having a first diameter and a cladding having a second diameter. The second portion includes a hollow core having a third diameter smaller than the first diameter and a cladding having a fourth diameter smaller than the second diameter.
摘要:
A method processes an optical image. The method includes providing a measured magnitude of the Fourier transform of a two-dimensional complex transmission function. The method further includes providing an estimated phase term of the Fourier transform of the two-dimensional complex transmission function. The method further includes multiplying the measured magnitude and the estimated phase term to generate an estimated Fourier transform of the two-dimensional complex transmission function. The method further includes calculating an inverse Fourier transform of the estimated Fourier transform, wherein the inverse Fourier transform is a spatial function. The method further includes calculating an estimated two-dimensional complex transmission function by applying at least one constraint to the inverse Fourier transform.
摘要:
An optical device includes a hollow-core photonic-bandgap fiber, wherein at least a portion of the hollow-core photonic-bandgap fiber has a longitudinal axis and is twisted about the longitudinal axis.
摘要:
A method determines a complex reflection impulse response of a fiber Bragg grating. The method includes providing a measured amplitude of a complex reflection spectrum of the fiber Bragg grating. The method further includes providing an estimated phase term of the complex reflection spectrum. The method further includes multiplying the measured amplitude and the estimated phase term to generate an estimated complex reflection spectrum. The method further includes calculating an inverse Fourier transform of the estimated complex reflection spectrum, wherein the inverse Fourier transform is a function of time. The method further includes calculating an estimated complex reflection impulse response by applying at least one constraint to the inverse Fourier transform of the estimated complex reflection spectrum.