摘要:
Provided is a microscope that allows irradiation with uniform illumination light without decreasing the amount of light. Employed is a microscope 1 including an incoherent light source 31 that emits incoherent light I; an optical fiber 35 on which the incoherent light I is incident and which guides the incident incoherent light I by repeated total reflection; a DMD 37 having an array of movable micromirrors each reflecting or transmitting the guided incoherent light I; an objective lens 18 that irradiates a specimen 19 with the incoherent light I reflected or transmitted by the DMD 37 and that collects fluorescence F coming from the specimen 19; a dichroic mirror 17 that splits off the collected fluorescence F coming from the specimen 19 from the incoherent light I; and a CCD camera 13 that is disposed at a position conjugate to the position of the DMD 37 and that detects the fluorescence F coming from the specimen 19 and split off by the dichroic mirror 17.
摘要:
An observation laser beam for observing a specimen and a manipulation laser beam for manipulating the specimen are multiplexed; the multiplexed beams irradiate the specimen, which is mounted on a stage, via an objective lens; and fluorescence emitted from inside the specimen in the observation optical axis direction is detected. In a preparation mode, a focal-position adjusting unit is controlled so that the focal position of the observation laser beam and the focal position of the manipulation laser beam are coincident, independent of the movement of the objective lens or the stage by a focusing mechanism; and in an observation mode, the focal-position adjusting unit is controlled so as to cancel out the shift of the focal position of the manipulation laser beam according to the movement of the objective lens or the stage.
摘要:
A laser scanning microscope which focuses light beams from a laser beam source to a sample by means of an objective lens and detects transmission light from the sample, reflection light, or fluorescence generated from the sample, includes an observation laser scanning optical system which irradiates coherent light from one side of the sample and which carries out scanning the sample, a stimulation laser scanning optical system which irradiates coherent light from an opposite side across the sample and which carries out scanning the sample, an observation light detector provided to be branched from the observation laser scanning optical system, and a light invasion preventing section which prevents the coherent light irradiated from the stimulation laser scanning optical system from invading the observation light detector.
摘要:
A confocal microscope apparatus comprises a first optical scanning system which obtains a scan image of a sample using a laser beam from a first laser light source, a second optical scanning system which scans specific regions of a sample with a laser beam from a second laser light source that is different from the first laser light source, thereby causing a particular phenomenon, and a beam diameter varying mechanism which can change the beam diameter of the laser beam of at least one of the first optical scanning system and the second optical scanning system. With this configuration, the apparatus further comprises an excitation light intensity distribution calculator which calculates and stores the excitation light intensity distribution along a depth direction on the sample surface from the beam diameter of the laser beam output from the beam diameter varying mechanism.
摘要:
The invention provides a multiphoton-excitation-type examination apparatus that efficiently generates a multiphoton-excitation effect, that makes the measurement head compact, and that can be easily adjusted when the measurement head is replaced. The multiphoton-excitation-type examination apparatus comprises a laser light source that oscillates ultrashort pulsed laser light; an optical fiber that transmits the ultrashort pulsed laser light from the laser light source; a support member; a measurement head supported on the support member so as to be movable upwards and downwards and at an angle, and having an optical system that irradiates a specimen with the ultrashort pulsed laser light transmitted by the optical fiber that measures fluorescence or reflected light coming from the specimen; and a dispersion-compensating member, in the measurement head, that compensates for group velocity dispersion of the ultrashort pulsed laser light irradiated onto the specimen.
摘要:
An image recording method for use in a confocal laser scanning microscope apparatus is configured to scan a specimen with each of a plurality of laser lights at least having different wavelengths as spotlight, to detect the light from the specimen based on the spotlight, and to partition and record obtained image information.
摘要:
A confocal microscope apparatus comprises a first optical scanning system which obtains a scan image of a sample using a laser beam from a first laser light source, a second optical scanning system which scans specific regions of a sample with a laser beam from a second laser light source that is different from the first laser light source, thereby causing a particular phenomenon, and a beam diameter varying mechanism which can change the beam diameter of the laser beam of at least one of the first optical scanning system and the second optical scanning system. With this configuration, the apparatus further comprises an excitation light intensity distribution calculator which calculates and stores the excitation light intensity distribution along a depth direction on the sample surface from the beam diameter of the laser beam output from the beam diameter varying mechanism.
摘要:
A scanning microscope device includes a light source that emits laser light; an X-Y galvanometer mirror that scans the laser light on a sample; an objective lens that irradiates the sample with the scanned laser light and collects fluorescence generated at an irradiated position; a non-descan-detection excitation DM that is disposed between the X-Y galvanometer mirror and the objective lens and separates the laser light and the fluorescence from each other; a fiber that receives the separated fluorescence through an entrance end thereof and emits the fluorescence from an exit end thereof that is formed in a substantially linear shape; a diffraction grating that disperses the fluorescence emitted from the exit end of the fiber in a direction orthogonal to a longitudinal direction of the exit end; and a multi-anode PMT having plural cells arrayed in the dispersing direction of the dispersed fluorescence.
摘要:
It is possible to check for observation success or failure and the observation history without waiting for observation to be completely finished, thus saving time and energy required for observation, and avoiding lost opportunities for observation of precious samples etc. Provided is a microscope apparatus including an image acquisition unit for acquiring a plurality of frame images while varying a plurality of parameters; an image saving unit for successively saving the frame images acquired by the image acquisition unit; a property-information saving unit for saving property information in which identifying information of the saved frame images is associated with the parameters; and a control unit for controlling these units, wherein the control unit saves updated property information in the property-information saving unit each time the frame image is saved in the image saving unit.
摘要:
A confocal microscope apparatus comprises a first optical scanning system which obtains a scan image of a sample using a laser beam from a first laser light source, a second optical scanning system which scans specific regions of a sample with a laser beam from a second laser light source that is different from the first laser light source, thereby causing a particular phenomenon, and a beam diameter varying mechanism which can change the beam diameter of the laser beam of at least one of the first optical scanning system and the second optical scanning system. With this configuration, the apparatus further comprises an excitation light intensity distribution calculator which calculates and stores the excitation light intensity distribution along a depth direction on the sample surface from the beam diameter of the laser beam output from the beam diameter varying mechanism.