摘要:
A color display device is disclosed. The display includes a light modulating element and a color tunable OLED illumination source configured to illuminate the light modulating element, the illumination source comprising a plurality of OLED layers fabricated on different substrates and assembled in a stacked configuration, wherein each of the plurality of OLED layers comprises active light-emitting areas, alternating with inactive non-light emitting areas configured to transmit light emitted by underlying OLED layers. A method of illuminating a backlit display is also disclosed.
摘要:
An illumination source including a first OLED layer capable of emitting light of a first color, a second OLED layer capable of emitting light of a second color and disposed on the first OLED layer, each of said first, second OLED layers including alternating active light-emitting areas and inactive non-light emitting areas; said first OLED layer comprising a first substrate, a first transparent electrode layer disposed on the substrate, a first electroluminescent layer capable of emitting light of the first color disposed on the first transparent electrode layer, and a first patterned metallized electrode layer forming the alternating active light-emitting areas and inactive non-light emitting areas; and said second OLED layer comprising a second substrate, a second transparent electrode layer disposed on the substrate, a second electroluminescent layer capable of emitting light of the second color disposed on the second transparent electrode layer, and a second patterned metallized electrode layer forming the alternating active light-emitting areas and inactive non-light emitting areas; wherein light emitted by the active light-emitting areas of the first OLED layer is transmitted through the inactive non-light emitting areas of the second OLED layer. A method for tuning color and/or intensity of the light output of an illumination source is also disclosed.
摘要:
An illumination source including a first OLED layer capable of emitting light of a first color, a second OLED layer capable of emitting light of a second color and disposed on the first OLED layer, each of said first, second OLED layers including alternating active light-emitting areas and inactive non-light emitting areas; said first OLED layer comprising a first substrate, a first transparent electrode layer disposed on the substrate, a first electroluminescent layer capable of emitting light of the first color disposed on the first transparent electrode layer, and a first patterned metallized electrode layer forming the alternating active light-emitting areas and inactive non-light emitting areas; and said second OLED layer comprising a second substrate, a second transparent electrode layer disposed on the substrate, a second electroluminescent layer capable of emitting light of the second color disposed on the second transparent electrode layer, and a second patterned metallized electrode layer forming the alternating active light-emitting areas and inactive non-light emitting areas; wherein light emitted by the active light-emitting areas of the first OLED layer is transmitted through the inactive non-light emitting areas of the second OLED layer. A method for tuning color and/or intensity of the light output of an illumination source is also disclosed.
摘要:
Embodiments of the invention include a selective deposition assembly that allows for coating of selective portions of an object, such as an electronic device, and inhibits coating of other selective portions of the object, such as the electric contacts. The selective deposition assembly includes a web that has open spaces in it, and reference mechanisms to register the object relative to the web. Other embodiments include a fabrication and selective coating system and method for coating selective portions of an object.
摘要:
Apparatus and methods for forming optoelectronic devices such as an array of light emitting diodes or photovoltaic cells in one embodiment a roll-to-roll process in which a uniquely configured roller having a raised spiral coating surface is aligned with a plurality of first electrodes disposed on an angle on a substrate for coating a plurality of spaced-apart angled coated strips of optoelectronic materials along the cross-web direction of the substrate.
摘要:
An illumination source is disclosed. The illumination source includes at least one OLED layer. The OLED layer includes an active light emitting region including a plurality of primary light-emitting OLED elements and secondary light emitting OLED elements connecting each of the plurality of primary light emitting OLED elements to at least another primary light emitting OLED element.
摘要:
An illumination source is disclosed. The illumination source includes at least one OLED layer. The OLED layer includes an active light emitting region including a plurality of primary light-emitting OLED elements and secondary light emitting OLED elements connecting each of the plurality of primary light emitting OLED elements to at least another primary light emitting OLED element.
摘要:
Embodiments of the invention include a selective deposition method that allows for coating of selective portions of an object, such as an electronic device, and inhibits coating of other selective portions of the object, such as the electric contacts. The selective deposition method includes providing a web to transport the object through a deposition chamber. The web may include and reference mechanisms to register the object relative to the web. The method further includes providing deposition material and a shadow mask that has open spaces in it to inhibit coating selective portions of the object. The deposition material serves as the coating material.
摘要:
Disclosed are methods for controlling quality in forward gravure printed electroactive layers for electroactive devices. The corresponding electroactive layers made by said methods and electroactive devices comprising said layers are also embodiments of the invention.
摘要:
An apparatus and method of uniformly patterning electro-luminescent layer or layers of an electro-luminescent device such as a photovoltaic cell or an OLED includes solvating and wiping the layer(s) in a tangential direction.