Abstract:
Some embodiments of the present disclosure provide a back side illuminated (BSI) image sensor. The BSI image sensor includes a semiconductive substrate, a deep trench isolation (DTI) at a back side of the semiconductive substrate, and a dielectric layer. the dielectric layer includes a top portion over the back side, and a side portion lined to a sidewall of the DTI. The BSI image sensor includes a planarization stop layer disposed conformally on top of the dielectric layer. The planarization stop layer includes a top section on the top portion, a side section lined against the side portion, and a first transmittance. The BSI image sensor includes a low-transparent material inside the DTI, and the low-transparent material includes a second transmittance. The second transmittance is lower than the first transmittance.
Abstract:
The present disclosure provides a method for manufacturing a semiconductor isolation structure, including providing a substrate with a top surface; forming a patterned mask over the top surface; forming a trench through the patterned mask in the substrate by a directional etch comprising nitrogen-containing substance, wherein an aspect ratio of the trench is formed to be greater than about 18, and a ratio of a width of a narrowest portion and a width of a widest portion of the isolation region is formed to be greater than about 0.7; and filling the trench with insulating materials. The present disclosure also provides an image sensing device, including a radiation sensing region with a first isolation region separating adjacent radiation detecting units and a peripheral region, wherein an aspect ratio of the first isolation region is greater than about 18.
Abstract:
A semiconductor device includes a substrate, a dielectric layer, a plurality of dielectric patterns and a conductive pad. The substrate includes a first surface and a second surface opposite to the first surface. The dielectric layer is disposed at the first surface of the substrate, and the substrate is disposed between the dielectric layer and the second surface of the substrate. The dielectric patterns are disposed on the dielectric layer and between the first surface and the second surface of the substrate. The conductive pad is inserted between the plurality of dielectric patterns and extended into the dielectric layer.
Abstract:
A semiconductor device includes a single-layered dielectric layer, a conductive line, a conductive via and a conductive pad. The conductive line and the conductive via are disposed in the single-layered dielectric layer. The conductive pad is extended into the single-layered dielectric layer to electrically connected to the conductive line.
Abstract:
A semiconductor device includes a substrate, a dielectric layer, a plurality of dielectric patterns and a conductive pad. The substrate includes a first surface and a second surface opposite to the first surface. The dielectric layer is disposed at the first surface of the substrate, and the substrate is disposed between the dielectric layer and the second surface of the substrate. The dielectric patterns are disposed on the dielectric layer and between the first surface and the second surface of the substrate. The conductive pad is inserted between the plurality of dielectric patterns and extended into the dielectric layer.