Abstract:
A magnetic sensor includes an MR element and a bias field generation unit. The MR element includes a magnetization pinned layer having a magnetization pinned in a direction parallel to an X direction, a free layer having a magnetization that varies depending on an X-direction component of an external magnetic field, and a nonmagnetic layer interposed between the magnetization pinned layer and the free layer. The magnetization pinned layer, the nonmagnetic layer and the free layer are stacked to be adjacent in a Y direction. The free layer receives an interlayer coupling magnetic field in a direction parallel to the X direction resulting from the magnetization pinned layer. The bias field generation unit applies a bias magnetic field to the free layer. The bias magnetic field includes a first component in a direction opposite to that of the interlayer coupling magnetic field and a second component in a Z direction.
Abstract:
A magnetic sensor is provided with first and second magnetoresistive effect elements that can detect an external magnetic field. The first and second magnetoresistive effect elements are a plurality of layers of multilayer body including free layers where their magnetization directions vary due to the external magnetic field. Shapes of the first and second magnetoresistive effect elements viewed from the upper side in the lamination direction are different from each other. The first magnetoresistive effect element has a shape that can increase a slope of an output of the first magnetoresistive effect element relative to the change of the external magnetic field. The second magnetoresistive effect element has a shape that can decrease a slope of an output of the second magnetoresistive effect element relative to the change of the external magnetic field compared to the slope of the output of the first magnetoresistive effect element.
Abstract:
A stack of electrical components has a first electrical component having a first surface, a second surface that is opposite to the first surface and a side surface that is located between the first surface and the second surface; a second electrical component having a third surface on which the first electrical component is mounted, the third surface facing the second surface and forming a corner portion between the third surface and the side surface; an adhesive layer that bonds the first electrical component to the second electrical component, the adhesive layer has a first portion that is located between the second and third surface and a second portion that is made of a same material as the first portion and that fills the corner portion; and a conductive layer that extends on a side of the side surface, curves along the second portion and extends to the third surface.
Abstract:
A magnetic sensor device includes a conductor that constitutes a coil, and a detection circuit including a plurality of MR elements. The coil includes an upper coil portion. The upper coil portion includes a first conductor portion and a second conductor portion. An average cross-sectional area of the upper coil portion in the first conductor portion of the upper coil portion is smaller than that of the upper coil portion in the second conductor portion. The first conductor portion is located at a position where a first partial magnetic field occurring from the first conductor portion is applied to an MR element.
Abstract:
A magnetic sensor is provided with first and second magnetoresistive effect elements that can detect an external magnetic field. The first and second magnetoresistive effect elements are a plurality of layers of multilayer body including free layers where their magnetization directions vary due to the external magnetic field. Shapes of the first and second magnetoresistive effect elements viewed from the upper side in the lamination direction are different from each other. The first magnetoresistive effect element has a shape that can increase a slope of an output of the first magnetoresistive effect element relative to the change of the external magnetic field. The second magnetoresistive effect element has a shape that can decrease a slope of an output of the second magnetoresistive effect element relative to the change of the external magnetic field compared to the slope of the output of the first magnetoresistive effect element.
Abstract:
A joint structure includes a first metal part and a second metal part. The first metal part includes a nickel-iron alloy or copper. The second metal part is provided adjacent to the first metal part and includes tin. Out of the first metal part and the second metal part, the first metal part includes a plurality of first metal parts, or out of the first metal part and the second metal part, the second metal part includes a plurality of second metal parts, or the first metal part includes the plurality of first metal parts and the second metal part includes the plurality of second metal parts.
Abstract:
A magnetic sensor includes an MR element and a pair of magnets. The MR element includes a magnetization pinned layer having a magnetization pinned in a direction parallel to an X direction, a free layer having a magnetization that varies depending on an X-direction component of an external magnetic field, and a nonmagnetic layer interposed between the magnetization pinned layer and the free layer. The magnetization pinned layer, the nonmagnetic layer and the free layer are stacked to be adjacent in a Y direction. The free layer receives an interlayer coupling magnetic field in a direction parallel to the X direction resulting from the magnetization pinned layer. The pair of magnets applies a bias magnetic field to the free layer. The bias magnetic field includes a first component in a direction opposite to that of the interlayer coupling magnetic field and a second component in a Z direction.
Abstract:
A magnetic sensor comprising a resin layer having a first surface and a second surface, which is opposite to the first surface and a magnetoresistive effect unit that detects a magnetic field in a predetermined direction, wherein the magnetoresistive effect unit includes at least a first magnetoresistive effect unit that detects a magnetic field in a first direction, the first direction is a direction orthogonal to the first surface of the resin layer, an inclined surface that is inclined at a predetermined angle with respect to the first surface is formed in the first surface of the resin layer, and the first magnetoresistive effect unit is formed in the inclined surface.
Abstract:
A magnetic sensor is provided with first and second magnetoresistive effect elements that can detect an external magnetic field. The first and second magnetoresistive effect elements are a plurality of layers of multilayer body including free layers where their magnetization directions vary due to the external magnetic field. Shapes of the first and second magnetoresistive effect elements viewed from the upper side in the lamination direction are different from each other. The first magnetoresistive effect element has a shape that can increase a slope of an output of the first magnetoresistive effect element relative to the change of the external magnetic field. The second magnetoresistive effect element has a shape that can decrease a slope of an output of the second magnetoresistive effect element relative to the change of the external magnetic field compared to the slope of the output of the first magnetoresistive effect element.
Abstract:
A magnetic sensor is provided with first and second magnetoresistive effect elements that can detect an external magnetic field. The first and second magnetoresistive effect elements include at least magnetization direction change layers where a direction of magnetization is changed according to an external magnetic field. The width W1 of a magnetization direction change layer in an initial magnetization direction of the magnetization direction change layer of the first magnetoresistive effect element, and the width W2 of a magnetization direction change layer in an initial magnetization direction of the magnetization direction change layer of the second magnetoresistive effect element have a relationship shown by formula (1) below. Sensitivity of the first magnetoresistive effect element to the external magnetic field is higher than that of the second magnetoresistive effect element. W1>W2 (1)