Abstract:
A reactor using a composite magnetic core in which a ferrite core and a soft magnetic metal core are combined The reactor is composed of a pair of yoke portion magnetic portions composed of ferrite, winding portion core(s) disposed between the opposite planes of the yoke portion cores, and coil(s) winding around the winding portion core(s). The winding portion core(s) is/are formed using a soft magnetic metal core with a substantially constant cross sectional area. Junction portion cores composed of soft magnetic metal powder cores with a tubular shape are disposed at the spaces where the winding portion core(s) face(s) the yoke portion cores, and the area of the part where the junction portion core faces the yoke portion core is made to be 1.3 to 4.0 times that of the section of the winding portion core.
Abstract:
A coil-type electronic component comprises an element including a magnetic element body and a coil conductor. A portion of the magnetic element body in between layers of the coil conductor adjacent to each other in an axis direction of the coil conductor includes first soft magnetic metal particles. A portion of the magnetic element body on an outer side along the axis includes second soft magnetic metal particles. The first soft magnetic metal particles have a saturation magnetization (Ms) higher than that of the second soft magnetic metal particles.
Abstract:
A method for producing soft magnetic metal powder includes: a raw material powder preparing step of preparing metal raw material powder having metal raw material particles including iron, silicon, and boron; a mixture step of mixing the metal raw material powder and a carbon source substance and obtaining mixed powder; and a heat treatment step of performing heat treatment on the mixed powder in a non-oxidizing atmosphere containing nitrogen at a heat treatment temperature of 1,250° C. or higher and making the metal raw material particles spherical.
Abstract:
The present invention relates to a soft magnetic metal powder which contains B and has Fe and Ni as the main components, wherein the content of Ni in the soft magnetic metal powder is 30 to 80 mass %, the total content of Fe and Ni in the soft magnetic metal powder is 90 mass % or more, the content of B inside the metal particle of the soft magnetic metal powder is 10 to 150 ppm, and the particle has a film of boron nitride on the surface. The present invention also relates to a soft magnetic metal powder core prepared by using the soft magnetic metal powder.
Abstract:
A reactor using a composite magnetic core in which a ferrite core and a soft magnetic metal core are combined. The reactor is composed of a pair of yoke portion magnetic portions composed of a ferrite core, winding portion core(s) disposed between the opposite planes of the yoke portion cores, and coil(s) wound around the winding portion core(s). The winding portion core(s) is/are made of a soft magnetic metal core, and the cross sectional area of the part for winding the coil of the winding portion core is substantially constant. When the cross sectional area of the part for winding the coil of the winding portion core is set as S1, and the area of the parts opposite to the yoke portion cores in the winding portion core(s) is set as S2, the area ratio S2/S1 is set to be 1.3 to 4.0.
Abstract:
A soft magnetic metal powder or the like from which a soft magnetic metal fired body can be provided has a high magnetic permeability μ and a specific resistance ρ and is contained in a coil-type electronic component having sufficiently high inductance L and Q value and unlikely to be plating-extended and short-circuited. A soft magnetic metal powder contains soft magnetic metal particles containing at least Fe and Ni. Said soft magnetic metal powder further contains P, Si, Cr and/or M. M is at least one selected from among B, Co, Mn, Ti, Zr, Hf, Nb, Ta, Mo, Mg, Ca, Sr, Ba, Zn, Al, and rare earth elements. The content of each element is within a predetermined range.
Abstract:
The present invention relates to a soft magnetic metal powder which has Fe as the main component and contains Si and B, wherein, the content of Si in the soft magnetic metal powder is 1 to 15 mass %, the content of boron inside the metal particle of the soft magnetic metal powder is 10 to 150 ppm, and the particle has a film of boron nitride on the surface. The present invention also relates to a soft magnetic metal powder core prepared by using the soft magnetic metal powder.
Abstract:
A reactor uses a composite magnetic core which combines a ferrite core and a soft magnetic metal core. The reactor is composed of a pair of yoke portion cores composed of ferrite cores, winding portion core(s) disposed between the opposite planes of the yoke portion cores, and coil(s) wound around the winding portion core(s). Flange-like members are disposed at the end part of the winding portion core(s) in a way of being external connected with the periphery of winding portion core(s) which is composed of a soft magnetic metal core. The flange-like member is composed of a metal material with iron as the main component which can be magnetically attracted to a magnet, and a junction portion of the flange-like member and the yoke portion core is formed at one flat plane of the member which is the same plane with an end plane of the winding portion core.
Abstract:
A soft magnetic metal particle may include a core particle and an insulating film over a surface of the core particle. The insulating film may include a complex oxide containing Si and B. B may constitute 1.0 mol % or more and 60.0 mol % or less of a total of Si and B in the insulating film.
Abstract:
A soft magnetic metal particle comprises an Fe—Ni based soft magnetic metal. The soft magnetic metal particle includes both an fcc phase and a bcc phase. A magnetic element body includes the soft magnetic metal particle. A coil-type electronic component includes the magnetic element body and a coil conductor.