Abstract:
The present invention provides a composite material and a sensing platform unit comprising a self-healing polymer matrix and at least two conductive nanomaterials embedded therein. The polymer matrix has a multi-layer structure comprising a first layer comprising a network of a first nanomaterial, which resistance changes in response to a mechanical damage inflicted on the polymer matrix; and a second layer comprising a network of a second nanomaterial, configured to generate heat under applied voltage. The network of the first nanomaterial and the network of the second nanomaterial are electrically connected to a mutual control circuit which is configured to apply voltage to the second nanomaterial upon a change in resistance of the first nanomaterial. The sensing platform unit further comprises a third layer comprising a network of a third nanomaterial configured to detect at least one of pressure, strain, temperature, pH, humidity, and volatile organic compounds (VOCs).
Abstract:
The invention proposes an approach utilizing novel and artificially intelligent hybrid sensor arrays with multiplexed detection capabilities for disease-specific biomarkers from the exhaled breath of a subject. The technology provides a rapid and highly accurate diagnosis in various COVID-19 infection and transmission scenarios.
Abstract:
The present invention provides methods of diagnosing cancer in a test subject, comprising exposing an array of chemically sensitive sensors comprising a material selected from the group consisting of conductive nanostructures coated with an organic coating, a conducting polymer and a conductive polymer composite, to a blood sample and a urine sample obtained from the test subject, and analyzing output signals of the chemically sensitive sensors upon exposure of the array to the blood sample and the urine sample. The array of the chemically sensitive sensors can be a part of a portable medical device. Further provided is a method of diagnosing cancer in a test subject, comprising measuring and analyzing levels of a set of volatile organic compounds (VOCs) in a blood sample and a urine sample obtained from the test subject.
Abstract:
The present invention is directed to a sensor having continuous and discontinuous regions of conductive metallic nanoparticles capped with an organic coating which enables the detection of volatile organic compounds and/or water vapor.