Abstract:
According to an example aspect of the present invention, there is provided a travelling wave parametric amplifier comprising a waveguide transmission line comprising therein at least ten Josephson elements, wherein each of the at least ten Josephson element comprises a loop, with exactly one Josephson junction of first size on one half of the loop and at least two Josephson junctions of a second size on a second half of the loop, the second size being larger than the first size, a flux bias line configured to generate a magnetic flux threading each of the at least one loop, and a set of resistors coupled with the flux bias line.
Abstract:
The disclosure relates to a quantum detector configured to receive a microwave signal from a microwave source. The quantum detector comprises a main element formed by a main Josephson junction and a Josephson transmission line which is coupled to the main element for outputting a measurement signal. The Josephson transmission line comprises at least a first set of JTL elements and a second set of JTL elements. The capacitively shunted Josephson junction in each JTL element in the first set is weakly damped, and the JTL element in the second set are more strongly damped than the JTL elements in the first set.
Abstract:
According to an example aspect of the present invention, there is provided a travelling wave parametric amplifier comprising a waveguide transmission line comprising therein at least ten Josephson elements, wherein each of the at least ten Josephson element comprises a loop, with exactly one Josephson junction of first size on one half of the loop and at least two Josephson junctions of a second size on a second half of the loop, the second size being larger than the first size, a flux bias line configured to generate a magnetic flux threading each of the at least one loop, and a set of resistors coupled with the flux bias line.
Abstract:
A solution for reading detector arrays is disclosed. The solution comprises generating (400) an excitation signal, varying (402) the frequency of the excitation signal in time, supplying (404) the excitation signal to a detector array comprising a set of thermal detectors. The number of detectors corresponds to the frequencies of the excitation signal. In the solution, the signal is demodulated (406) at the output of the detector array and time-multiplexed base band signal is obtained. An analogue to digital conversion is performed (408) to the time-multiplexed base band signal and the base band signal is demultiplexed (410) to obtain a set of detector signals.
Abstract:
A superconducting thermal detector (bolometer) of THz (sub-millimeter) wave radiation based on sensing the change in the amplitude or phase of a resonator circuit, consisting of a capacitor (Csh) and a superconducting temperature dependent inductor where the said inductor is thermally isolated from the heat bath (chip substrate) by micro-suspensions. The bolometer design includes a thin film inductor located on the membrane, a single or/and multi-layered thin film capacitor, and a thin film absorber of incoming radiation. The bolometer design can also include a lithographic antenna with antenna termination and/or a back reflector beneath the membrane for optimal wavelength detection by the resonance circuit. The superconducting thermal detector (bolometer) and arrays of these detectors operate in a temperature range from 1 Kelvin to 10 Kelvin.
Abstract:
A superconducting thermal detector (bolometer) of THz (sub-millimeter) wave radiation based on sensing the change in the amplitude or phase of a resonator circuit, consisting of a capacitor (Csh) and a superconducting temperature dependent inductor where the said inductor is thermally isolated from the heat bath (chip substrate) by micro-suspensions. The bolometer design includes a thin film inductor located on the membrane, a single or/and multi-layered thin film capacitor, and a thin film absorber of incoming radiation. The bolometer design can also include a lithographic antenna with antenna termination and/or a back reflector beneath the membrane for optimal wavelength detection by the resonance circuit. The superconducting thermal detector (bolometer) and arrays of these detectors operate in a temperature range from 1 Kelvin to 10 Kelvin.