Abstract:
The disclosure relates to a method in bipolar technology of providing a back contact to the collector of a semiconductor device through a dielectrically isolated circuit to reduce saturation resistance and to provide a continuous region of single crystal semiconductor material extending through the entire slice to provide scribe lines extending entirely through the single crystal material to provide much higher scribing yields. The above is provided by depositing an oxide layer over a single crystal substrate and selectively removing portions of the oxide which will later be either scribe points or be positioned beneath the collector of the transistor to be formed. Semiconductor material is then deposited over the oxide layer, this material depositing on the oxide layer and also on the silicon substrate in the region where the oxide has been removed. A buildup will be provided which is polycrystalline over the oxide layer and single crystal over the region wherein the deposited silicon is directly in contact with the silicon substrate. The silicon substrate is then ground and polished back and an epitaxial layer is then deposited thereon. In the case of the scribe lines, an oxide coating is then placed over the topmost semiconductor layer and portions of the oxide are removed over the scribe lines. An orientation dependent etch is then provided through the semiconductor material bound to the scribe lines. Normal scribing techniques could also be used to provide a relatively high yield as compared with the prior art along the scribe lines.