Abstract:
Polycrystalline silicon having a needlelike oriented grain structure is found to have anisotropic electrical and thermal properties. A monolithic integrated-circuit structure having a plurality of monocrystalline silicon islands is fabricated in a polycrystalline silicon matrix having such a grain structure, with the grain direction oriented to provide maximum electrical resistivity between the monocrystalline islands, and maximum thermal conductivity toward a header or other heat sink. In one embodiment, the monocrystalline islands and polycrystalline matrix are grown by vapor deposition of silicon on a monocrystalline substrate provided with a suitable masking pattern, whereby the polycrystalline material grows on the mask concurrently with the growth of monocrystalline silicon on the unmasked areas of the substrate.
Abstract:
Disclosed is a method of forming a semiconductor device having circuit components in a semiconductor substrate which are electrically isolated from each other by a layer of etch resistant material. During the fabrication of the device the etch resistant material acts as an etch barrier that prevents the etchant from removing any portion of the semiconductor substrate used for the circuit components.
Abstract:
The disclosure relates to a method and system for coupling semiconductor components on a single semiconductor chip or wafer without providing the possibility for short circuits and/or capacitances between metallization layers where connections between one set of components via metallization must pass across the path of connections via metallization to other sets of components. This is accomplished by providing a light conducting path in the semiconductor chip or wafer, such as in the form of a silicon dioxide layer path between the elements to be coupled. A device is provided in the coupling path which is capable of passing a light beam to the elements themselves for activating them, the elements being activated by light impinging on them. The elements are light responsive for actuation, or actuated electrically by another adjacently located light responsive element. The device for providing the light can be a light emitting diode which is externally controlled, a set of mirrors which reflect light from an external laser beam or any other system capable of providing light. The light travels through the silicon dioxide layer which has the properties of a light pipe and will actuate all light responsive semiconductor devices in the crystal to which the path of silicon dioxide is connected. There is no short circuit or stray capacitance problem due to elimination of at least part of the metallization.
Abstract:
A reactor for depositing a thin layer of material on a semiconductor slice by thermal decomposition of reactant gases is disclosed which has a circular rail, a number of disk-shaped graphite susceptors or supports each having a flat face from which projects a circular retaining rim, a member rotating on an axis extending through the circular rail for rolling the susceptors along the rail while supporting the susceptors at an inclined angle, and an RF coil for heating the susceptors as they are rolled along the rail. The edge of a semiconductor slice placed on the face of the susceptor rolls around the rim of the susceptor as the susceptor rolls. This mechanism is enclosed in a chamber and the reactant gases passed through the chamber. Thus, anomalies in the RF field are compensated as the susceptor rolls around the rail to evenly heat the susceptor, thermal anomalies in the susceptors are compensated as the slice continually moves over the susceptor, and anomalies in the composition of the reactant stream are compensated as each semiconductor slice rotates about its own axis while being translated in a circular path through the vapor stream. Layers uniform in thickness within + OR - 0.5 percent have been achieved, representing an order of magnitude improvement over prior art devices, with corresponding improvements in the uniformity of doping levels and resistivities.
Abstract:
The disclosure relates to a method in bipolar technology of providing a back contact to the collector of a semiconductor device through a dielectrically isolated circuit to reduce saturation resistance and to provide a continuous region of single crystal semiconductor material extending through the entire slice to provide scribe lines extending entirely through the single crystal material to provide much higher scribing yields. The above is provided by depositing an oxide layer over a single crystal substrate and selectively removing portions of the oxide which will later be either scribe points or be positioned beneath the collector of the transistor to be formed. Semiconductor material is then deposited over the oxide layer, this material depositing on the oxide layer and also on the silicon substrate in the region where the oxide has been removed. A buildup will be provided which is polycrystalline over the oxide layer and single crystal over the region wherein the deposited silicon is directly in contact with the silicon substrate. The silicon substrate is then ground and polished back and an epitaxial layer is then deposited thereon. In the case of the scribe lines, an oxide coating is then placed over the topmost semiconductor layer and portions of the oxide are removed over the scribe lines. An orientation dependent etch is then provided through the semiconductor material bound to the scribe lines. Normal scribing techniques could also be used to provide a relatively high yield as compared with the prior art along the scribe lines.
Abstract:
This invention relates to a monolithic integrated circuit in a substrate of a first semiconductor material containing electrically insulated islands of other different semiconductor materials. Preferably each of the islands is isolated from the substrate and from each other by an insulating layer of material. Thus an integrated circuit can be manufactured in a single substrate in accordance with the particular needs of the circuit functions required.